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Abstract 
This paper is an extension of Ahn, Lee and Schmidt (2001) to allow a parametric function 
for time-varying coefficients on the individual effects. It is shown that the main results of 
Ahn, Lee and Schmidt (2001) hold for our model too. Least squares is consistent, given 
white noise errors, but less efficient than a GMM estimator. An application of the GMM 
estimators to the measurement of cost efficiency of Spanish banks is also included. The 
empirical study shows the consequences of increasing the number of assumptions made 
regarding the error term. The GMM estimates, especially for private banks, cast doubt on 
the normality assumption supporting the traditional MLE frontier models. 
 
 
Keywords: panel data, individual effects, temporal variation, GMM, cost efficiency, 
banks. 
 
 

                                                           
∗ Victoria University, Wellington, New Zealand. 
♠ Universidad de Oviedo, Spain. 
♣ Michigan State University, USA. 



1 Introduction

In this paper we consider the model:���������
	������
�� 	����
�� ����������� 
�� ���� !"�$#% '&'&'&( *)+ -,-�$#� '&'&.&/ 102& (1.1)

We treat 0 as fixed, so that “asymptotic” means as )43 5 . The distinctive feature of the model

is the interaction between the time-varying parametric function � �6����� and the individual effect ��� .
We consider the case that the �7� are “fixed effects,” as will be discussed in more detail below. In

this case estimation may be non-trivial due to the “incidental parameters problem” that the number

of � ’s grows with sample size; see, for example, Chamberlain (1980).

Models of this form have been proposed and used in the literature on frontier productions func-

tions (measurement of the efficiency of production). For example, Kumbhakar (1990) proposed

the case that � �6���%�8�49:# 
<;>=@? ����A�, 
 �'BC, B ��D�E A , and Battese and Coelli (1992) proposed the case

that � �������F� ;(=@?�G�H �I��, H 0J��K . Both of these papers considered random effects models in which�L� is independent of � and � . In fact, both of these papers proposed specific (truncated normal)

distributions for the ��� , with estimation by maximum likelihood. The aim of the present paper is

to provide a fixed-effects treatment of models of this type.

There is also a literature on the case that the � � themselves are treated as parameters. That is,

the model becomes:�����M�N�
	��� �O
P� 	� ��
P� ���L� 
�� ���� !"�$#� '&'&.&/ *)Q -,R�$#� .&'&'&( 102& (1.2)

This corresponds to using a set of dummy variables for time rather than a parametric function� �6����� , and now � �S��� is just the product of fixed time and individual effects. This model has been

considered by Kiefer (1980), Holtz-Eakin, Newey and Rosen (1988), Lee (1991), Chamberlain

(1992), Lee and Schmidt (1993) and Ahn, Lee and Schmidt (2001), among others. Lee (1991) and

Lee and Schmidt (1993) have applied this model to the frontier production function problem, in
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order to avoid having to assume a specific parametric function � ���S��� . Another motivation for the

model is that a fixed-effects version allows one to control for unobservables (e.g. macro events)

that are the same for each individual, but to which different individuals may react differently.

Ahn, Lee and Schmidt (2001) establish some interesting results for the estimation of model

(1.2). A generalized method of moments (GMM) estimator of the type considered by Holtz-Eakin,

Newey and Rosen (1988) is consistent given exogeneity assumptions on the regressors � and � .

Least squares applied to (1.2), treating the �"� as fixed parameters, is consistent provided that the

regressors are strictly exogenous and that the errors � ��� are white noise. The requirement of white

noise errors for consistency of least squares is unusual, and is a reflection of the incidental param-

eters problem. Furthermore, if the errors are white noise, then a GMM estimator that incorporates

the white noise assumption dominates least squares, in the sense of being asymptotically more ef-

ficient. This is also a somewhat unusual result, since in the usual linear model with normal errors,

the moment conditions implied by the white noise assumption would not add to the efficiency of

estimation.

The results of Ahn, Lee and Schmidt apply only to the case that the � � are unrestricted, and

therefore do not apply to the model (1.1). However, in this paper we show that essentially the same

results do hold for the model (1.1). This enables us to use a parametric function � �����%� , and to test

the validity of this assumption, while maintaining only weak assumptions on the �T� . This may be

very useful, especially in the frontier production function setting. Applications using unrestricted� � have yielded temporal patterns of efficiency that seem unreasonably variable and in need of

smoothing, which a parametric function can accomplish.

The plan of the paper is as follows. Section 2 restates the model and lists our assumptions.

Section 3 considers GMM estimation under basic exogeneity assumptions, while Section 4 con-

siders GMM when we add the conditions implied by white noise errors. Section 5 considers least

squares estimation and the sense in which it is dominated by GMM. In Section 6, this methodology
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is applied to the measurement of cost efficiency of Spanish banks. Finally, Section 7 contains some

concluding remarks.

2 The model and assumptions

The model is given in equation (1.1) above. We can rewrite it in matrix form, as follows. Let���U�V�S���WA> '&'&'&/ C���YXU� 	 , �����V�����ZA> '&.&'&. 1����X[� 	 , and � �M�\� � �ZA( '&'&.&. � �YXM� 	 . Thus ��� is 0�]
# , �^� is 0�]`_ ,� � is 0V]P# , � is _ ]P# , � is a ]P# , and �7� is a scalar. (In this paper, all the vectors are column

vectors, and the data matrices are “vertically tall.”) Define a function �cbUd 3 e X , where d is a

compact subset of e"f , such that � �S���g�h� � A.���%�( '&'&.&/ � Xi���%�1� 	 . Note that 0 is fixed. In matrix form,

our model is: ���U�N��� �`
 #(X � 	� �j
P� ��������� 
�� �k !i�l#� '&'&'&( *)Q& (2.1)� ����� must be normalized in some way such as � ����� 	 � �S���nm # or � A.�S���nm # , to rule out trivial

failure of identification arising from � �S���J�po or scalar multiplications of � �S��� . Here we choose

the normalization � A/���%�qmV# .
Let r �s�4��� 	�ZA  '&.&'&. 1� 	��X  � 	� � 	 . We make the following “orthogonality” and “covariance” as-

sumptions.

Assumption 1 (Orthogonality). t � r 	�  *�L��� 	 � 	� �uo .
Assumption 2 (Covariance). t � � � 	� ��v Bw'x X .

Assumption 1 says that � ��� is uncorrelated with �7� , � � , and ���ZA( '&'&'&( 1����X , and therefore contains

an assumption of strict exogeneity of the regressors. Note that it does not restrict the correlation

between ��� and 9 � �y 6�^�WA( '&'&'&( 1����XzD , so that we are in the fixed-effects framework. Assumption 2

asserts that the errors are white noise.

We also assume the following regularity conditions.
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Assumption 3 (Regularity).

(i) � r 	�  *�L�y � 	� � 	 is independently and identically distributed over ! ;
(ii) � � has finite fourth moment, and t � �M�uo ;

(iii) � r 	�  *�L��� 	 has finite nonsingular second moment matrix;

(iv) t{r �k� � 	�  *���|� is of full column rank;

(v) � ���%� is twice continuously differentiable in � .
The first four of these conditions correspond to assumptions (BA.1)–(BA.4) of Ahn, Lee and

Schmidt (2001), who give some explanation. Condition (v) is new, and self-explanatory.

3 GMM under the Orthogonality Assumption

Let } ���`� } ���6� �  � �
� �~��� H � 	���|�PHl� 	�|� , and } �n� } ��� �  � ��� � } �ZA* '&'&'&/ } ��XU� 	 . Since } ���`�� �6��������� 
N� ��� , it follows that } ��� H�� �����%� } �ZAJ� � ��� H�� �����%� � �ZA , which does not depend on �7� . This

is a sort of generalized within transformation to remove the individual effects. The Orthogonality

Assumption (Assumption 1) then implies the following moment conditions:t{r �k9 } ����� �  � � H�� �6�S��� } �WA/� �  � ��Dz�<o� -,R�u�@ '&'&'&( 102& (3.1)

These moment conditions can be written in matrix form, as follows. Define � ���%�q�$9 H��L� �S���> x X E AkD 	 ,
where �[� ��� � B' '&.&'&. � XM� 	 . The generalized within transformation corresponds to multiplication

by � ���%� 	 , and the moment conditions (3.1) can equivalently be written as follows:t{� A���� �  �  C���-� t 9 � ���%��	 } �y� �  � �L� r ��D[�uo@& (3.2)

(This corresponds to equation (7) of Ahn, Lee and Schmidt (2001), but looks slightly different

because our r � is a column vector whereas theirs is a row vector.) This is a set of �|0 H #��/��0�_ 
 a �
moment conditions.
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Some further analysis is needed to establish that (3.2) contains all of the moment conditions

implied by the Orthogonality Assumption. Let ����� � t{r � r 	� , ����� � t{r ���L� , and v B� � t � B� .
Given the model (2.1), the Orthogonality Assumption holds if and only if the following moment

conditions hold: t 9 } ��� �  � ��� r � H�� ���%�L� ����� DU�<o�& (3.3)

We could use these moment conditions as the basis for GMM estimation. Alternatively, we can

remove the parameter �s��� by applying a nonsingular linear transformation to (3.3) in such a way

that the transformed set of moment conditions is separated into two subsets, where the first subset

does not contain �s��� and the second subset is exactly identified for �2��� , given � �  �  C��� . The

following transformation accomplishes this.

t ��� � 	 � x.�� 	 � x.�
���� 9 } �@� r � H�� � ����� Dz�uo (3.4)

where � m�0�_ 
 a for notational simplicity; similarly, � , � and } � are shortened expressions for� ����� , � �S��� and } ��� �  � � . This is a nonsingular transformation, since � �  � � is nonsingular, and

therefore GMM based on (3.4) is asymptotically equivalent to GMM based on (3.3). Now split

(3.4) into its two parts: t � � 	 } �@� r ���-�uo (3.5)t � � 	 } �|� r � H � � 	 � � ����� �No�& (3.6)

Here (3.6) is exactly identified for �2��� , given � , � and � , in the sense that the number of moment

conditions in (3.6) is the same as the dimension of ����� . Also ����� does not appear in (3.5). It fol-

lows (e.g., Ahn and Schmidt (1995), Theorem 1) that the GMM estimates of � , � and � from (3.5)

alone are the same as the GMM estimates of � , � and � if we use both (3.5) and (3.6), and estimate

the full set of parameters � �  �  C�@ �s��� � . But (3.5) is the same as (3.2), which establishes that (3.2)

contains all the useful information about � , � and � implied by the Orthogonality Assumption.
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Let � � A.� �  �  C�����p) E AI� ��:¡UA � A���� �  �  *��� . Then the optimal GMM estimator ¢� , ¢� , and ¢� based

on the Orthogonality Assumption solves the problem£^¤Z¥¦�§ ¨©§ ª ) �� A©� �  �  *���k	�« E AAkA �� A.� �  �  *��� (3.7)

where «�AkA¬� t{� A�� � 	 A�� evaluated at the true parameters. As usual, «�AkA can be replaced by any

consistent estimate. A standard estimate would be¢«�AkA-� #) �­ �:¡UA � A����¯®�  ®�  °®��� � A��k�°®�  ®�  °®���k	 (3.8)

where �°®�  ®�  @®��� is an initial consistent estimate of � �  �  *�%� such as GMM using identity weighting

matrix. Under certain regularity conditions (Hansen (1982), Assumption 3) the resulting GMM

estimator is ± ) -consistent and asymptotically normal.

To express the asymptotic variance of the GMM estimator analytically, we need a little more

notation. Let ²M³ be the 0{��0�_ 
 a �s]´_ selection matrix such that �n�T�µ� x Xn� r �S� 	 ²U³ , and let²�¶ be the 0{��0�_ 
 a �2] a selection matrix such that #'X � 	� �p� x X�� r �|� 	 ²�¶ . ²U³ and ²�¶ have the

following forms:²U³ �\� x.·¹¸ º©º©ºq¸�¸»·2¼�½ ... ¸ux'·¾º©º©ºq¸�¸»·2¼�½ ... º©º©º ... ¸�¸¿º©º©ºRx'·¹¸»·2¼�½ ��	 (3.9)²�¶ �\� ¸�½.¼�·Àº©º©ºR¸�½.¼�·¹x(½ ... º©º©º ... ¸�½.¼�·¾º©º©ºq¸�½.¼�·Áx/½ ��	@�l#/X���� ¸�½.¼ X ·  x(½ ��	 (3.10)

where ¸ ’s without dimension subscript stand for ¸�·2¼�· . Define Â � �ÄÃ �z� ���'Å(�6Æ%Ãz� 	 . The variance

of the asymptotic distribution of the GMM estimates of � , � and � equals ��Ç 	A « E AAkA Ç�A1� E A where«MAkAR� tÈ� A�� � 	 A�� as above andÇ�Aq�V9É� � � ���È� � 	 ²U³  ©� � � ����� � 	 ²�¶  Â � � ����� DÊ& (3.11)

This result can be obtained either by direct calculation, or by applying the chain rule to Ç�A calcu-

lated in Ahn, Lee and Schmidt (2001, p. 251). This asymptotic variance form is obtained from the

Orthogonality Assumption only and does not need any further assumption.
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A practical problem with this GMM procedure is that it is based on a rather large set of moment

conditions. Some considerable simplifications are possible if we make the following assumption

of no conditional heteroskedasticity (NCH) of � � :t � � � � 	�CË r �|�-� � w�w & (NCH)

Under the NCH assumption,«�AkA-� t 9 � ���'Å(� 	 � � � 	� � ���'Å(�L� r � r 	� DU� � �S�'Å(� 	 � wZw � ���'Å(�L� ����� & (3.12)����� can be consistently estimated by ¢���È� �<) E Az� ��:¡UA r � r 	� . Also, for any sequence � � �  � � �
that converges in probability to � � Å' � Å>� , we have#) �­ �:¡UA } �k� � �  � � � } ��� � �  � � ��	 fH 3 � w�w 
 v B� � ���'Å(� � �S�'Å>��	�& (3.13)

Since � ����� 	 � �S���-�uo , for any initial consistent estimate �Ì®�  ®�  °®��� ,� � ®���k	7Í�) E A �­ �:¡UA } ��� ®�  ®� � } ��� ®�  ®� ��	�Î � � ®�%� (3.14)

will consistently estimate � �S�©Å(� 	 � wZw � ���'Å(� . Thus it is easy to construct a consistent estimate of «�AkA
as given in (3.12).

In order to consistently estimate the asymptotic variance under NCH, we need to estimate����� , �s��� , and � 	 � w�w � . Estimation of �s��� and � 	 � wZw � was discussed above. We can obtain

an estimate of �s��� from the GMM problem (3.4). A direct algebraic calculation gives us that¢����� � #) �­ �:¡UA r � ¢� 	 ¢} �¢� 	 ¢� H #) �­ ��¡UA r ��9'Ï� 	 � w�w � Ï� � 	 � wZw � � E A ¢� 	 ¢} �ÉD|ÆI� ¢� 	 ¢� � (3.15)

where ¢} �s� } �y� ¢�  ¢� � , ¢� � � � ¢�%� , ¢� � � � ¢�%� , and Ï� 	 � wZw � is a consistent estimate of � 	 � w�w � , one

possibility of which is )´E A � ��:¡UA ¢� 	 ¢} � ¢} 	� ¢� .

Finally, under the NCH assumption, the set of moment conditions (3.2) can be converted into

an exactly identified set of moment conditions that yield an asymptotically equivalent GMM es-

timate. Specifically, we can replace the moment conditions tÈ� A����Ðo by the moment conditions
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t Ç 	A « E AAkA � A����uo . Routine calculation using the forms of Ç{A , «�AkA and � A�� yields the explicit expres-

sion: t �
	� � � � 	 � w�w � � E A � 	 } �U�uo (3.16a)t � �Ê# 	X � � � 	 � w�w � � E A � 	 } �M�No (3.16b)t{� 	 ��� � E A��� r � º Â 	 � � � 	 � w�w � � E A � 	 } �U�uo�& (3.16c)

These three sets of moment conditions respectively correspond to (21a), (21b), and (21c) of Ahn,

Lee and Schmidt (2001, p. 229). We can replace the nuisance parameters � w�w , �s��� and �s���
by consistent estimates, as given above (based on some initial consistent GMM estimates of � ,� and � ). The point of this simplification is that we have drastically reduced the set of moment

conditions: there are �|0 H #©�.��0�_ 
 a � moment conditions in � A�� (equation (3.2)) but only _ 
 a 
ÈÑ
moment conditions in (3.16).

We note that this is a stronger result than the corresponding result (Proposition 1, p. 229) of

Ahn, Lee and Schmidt (2001). In order to reach essentially the same conclusion on the reduction of

the number of moment conditions, they impose the assumption that � � is independent of � r �y C���|� ,
a much stronger assumption than our NCH assumption.

4 GMM under the Orthogonality and Covariance Assumptions

In this section we continue to maintain the Orthogonality Assumption (Assumption 1), but now we

add the Covariance Assumption (Assumption 2), which asserts that t � � � 	� �Nv Bw.x X .

Clearly the Covariance Assumption holds if and only ift � } � } 	� �R�Nv B� �[� 	 
 v Bw x X7& (4.1)

Condition (4.1) contains 0{��0 
 #��6Æ�� distinct moment conditions. It also contains the two nuisance

parameters v B� and v Bw , and so it should imply 0{��0 
 #��6Æ�� H � moment conditions for the estimation

9



of � , � and � . These are in addition to the moment conditions (3.2) implied by the Orthogonality

Assumption.

To write these moment conditions explicitly, we need to define some notation. Let Ò �Ó ¤ZÔ%Õz� Ò B' Ò�Ö  '&'&'&/ Ò XM� , with Ò � equal to the 0p]���0 H ,6� matrix of the last 0 H , columns (the��, 
 #�� th through 0 th columns) of x X for ,�×l0 , and with Ò X equal to a 0\]���0 H �%� matrix of

the second through �|0 H #�� -th columns of x X .1 Then we can write the distinct moment conditions

implied by the Orthogonality and Covariance Assumptions as follows:

tÈ� A���� t � � 	 } �@� r ���R�<o (4.2a)tÈ� By��� tÈÒ 	 � � 	 } �@� } ���R�uo (4.2b)tÈ�>Ö ��� tcØÉ� 	 } �@� � 	 } �� 	 �ÈÙ �<o�& (4.2c)

(In these expressions, � is short for � ���%� , � is short for � ���%� , and } � is short for } ��� �  � � .)
The moment conditions � A�� in (4.2a) are exactly the same as those in (3.2) of the previous

section, and follow from the Orthogonality Assumption.

The moment conditions � By� in (4.2b) correspond to those in equation (12) of Ahn, Lee and

Schmidt (2001). Note that it is not the case that t � � 	 } �[� } ���»�Ðo . Rather, looking at a typical

element of this product, we have t � } ��� HP� � } �ZA6� } �:Ú , which equals zero for Û
Ü�$, and Û
Ü�Ð# . The

selection matrix Ò 	 picks out the logically distinct products of expectation zero, the number of

which equals 0{��0 H #��6Æ�� H # . The selection matrix Ò plays the same role as the definition of the

matrices Ý�Þ��� plays in Ahn, Lee and Schmidt (2001). We note that the moment conditions � By� follow

from the non-autocorrelation of the � ��� ; homoskedasticity would not be needed.

The ��0 H #�� moment conditions in �(Ö � in (4.2c) correspond to those in equation (13) of Ahn,

Lee and Schmidt (2001). They assert that, for ,q� �@ .&'&'&( 10 , t � } ��� H�� � } �ZA6�/� � X Ú�¡UA � Ú } �:Ú��q�<o , and
1For any matrix ß with à rows, á 	� ß selects the last àÁâ+ã rows of ß for ã�äåà , and á 	X ß selects the

second through æWànâ�ç(è -th rows of ß . For any matrix ß with à columns, ßJá � selects the last ànâ»ã columns
of ß for ãTä
à , and ß�á X selects the second through æWàéâ´ç(è -th columns of ß .
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their validity depends on both the non-autocorrelation and the homoskedasticity of the � ��� .
Some further analysis may be useful to establish that (4.2b) and (4.2c) represent all of the useful

implications of the Covariance Assumption. We begin with the implication (4.1) of the Covariance

Assumption, which we rewrite as

t � } �@� } ���R�Nv B� � � � � � 
 v Bw/ê ;.ë x X7& (4.3)

Now, let ² be the 0 B ]ì0{�|0 
 #��6Æ�� selection matrix such that, for a 0�]å# vector } , ê ;.ë*í � }[} 	 �F�² 	 � } � } � , where “vech” is the vector of distinct elements. Thent8² 	�� } � } �-� ² 	|9îv B� � � � � � 
 v Bw ê ;.ë x XzD (4.4)

contains the distinct moment conditions.

Now we transform the moment conditions (4.4) by multiplying them by a nonsingular matrix,

in such a way that ( ! ) the first 0{��0 
 #��1Æ%� H � transformed moment conditions are those given in

(4.2b) and (4.2c); and ( !�! ) the last two moment conditions are exactly identified for the nuisance

parameters ( v B� and v Bw ), given the other parameters. This will imply that the last two moment

conditions are redundant for the estimation of � , � and � , and thus that (4.2b) and (4.2c) contain

all of the useful information implied by the Covariance Assumption for estimation of � , � and � .
To exhibit the transformation, let � � be the ��, H #�� th column of � ; let ï �� equal the , th column

of x X E B and ï X equal the last column of x X ; and define� Ò �k�X � 	 �$9 H�� X Ò 	X  ï � A ï 	X  2&'&'&. ï �X E B ï 	X  ¸Èð X E B�ñ ¼ XzDÊ& (4.5)

( Ò X was defined above.) Then9 � Bi� Ò B' �&.&'&. � X E AL� Ò X E A> Ò �k�X DÉ	 ² º ² 	|� } �@� } ���R� Ò 	�� � 	�� x XM�/� } �@� } ���> (4.6)

which is the same as in � By� in (4.2b). Also, let ò �A � x X H��[� 	 and ò �� , ,��ó�Ì '&'&'&/ 10 , is equal toÓ ¤ZÔ%Õ�ô ¸ � ¼ �� � � x X E �yõ plus a 0p]Á0 matrix with zero elements except for the , th row which is � 	 .
11



Then Ò 	A 9 ò �A  '&'&'&/ ò �X D ² º ² 	|� } �@� } ���-�\� � 	�� � 	:�/� } �@� } ���> (4.7)

which is equal to �>Ö � in (4.2c).

The point of the above argument is that the transformations preceding ² 	 � } ��� } �|� in (4.6) and

(4.7), stacked vertically, construct a 9 08�|0 
 #©�1Æ�� H �~D7]ì0{��0 
 #��6Æ�� matrix of full row rank, and

yield the moment conditions � By� and �*Ö � . The remaining two moment conditions that determine the

nuisance parameters are t ��� } B�ZA} ��B } �WA
���� � ��� v B� 
 v Bw� B*v B�

���� (4.8)

and must be linearly independent of the others (since they involve v B� and v Bw while the others do

not).

The asymptotic variance of the GMM estimate is complicated because it depends on the mo-

ments of � ��� up to fourth order. However, we can simplify things with the following “conditional

independence of the moments up to fourth order” (CIM4) assumption:

Conditional on � r �y C���|� , � ��� is independent over ,F�\#� >�@ .&'&'&( 10 , with mean
zero, and with second, third and fourth moments that do not depend on� r �Ê *�L��� or on , . (CIM4)

This is a strong assumption; it implies the Orthogonality Assumption, the Covariance Assumption,

the NCH assumption, and more. In Appendix A, we calculate the asymptotic variance matrix of

the GMM estimate based on (4.2) under the assumption (CIM4).

Let Â �öÃ � ���'Å/�1Æ%Ãz� and note that Â � � � 	 Â . Given assumption (CIM4), the moment condi-

tions (3.16), which are asymptotically equivalent to (4.2a), can be simplified as follows:

t � 	��÷iø } �M�<o (4.9a)t � �y#.	X ÷"ø } �U�uo (4.9b)t8� 	 ��� � E A��� r � º Â 	 ÷iø } �U�uo@& (4.9c)
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That is, in place of the large set of moment conditions (4.2a), (4.2b) and (4.2c), we can use the

reduced set of moment conditions consisting of (4.9), (4.2b) and (4.2c).

A final simplification arises if, conditional on � r �Ê *���|� , � ��� is i.i.d. normal. In this case, (4.2b)

can be shown to be redundant given (4.2a) and (4.2c). (See Proposition 4 of Ahn, Lee and Schmidt

(2001, p. 231).) Hence, in that case, the GMM estimator using the moment conditions (4.9) and

(4.2c) is efficient.

5 Least Squares

In this section we consider the concentrated least squares (CLS) estimation of the model. We treat

the ��� as parameters to be estimated, so this is a true “fixed effects” treatment. We can consider

the following least squares problem:£^¤Z¥¦�§ ¨©§ ª1§ �%ù §ûúûúûú § ��ü ) E A �­ �:¡UA 9û��� H ��� �+H #/X � 	� ��H�� ���������WD 	 9î�~� H ��� �ìH #(X � 	� �OH�� �S���6�L�ZD�& (5.1)

Solving for �-A* '&'&'&/ *� � first, we get���k� �  �  *�%�T�\9 � �S����	 � �S���kD E A � ���%��	 } �k� �  � � !i�l#� '&'&'&/ *)+& (5.2)

where } ��� �  � �F�u�~� H ��� �ìH #/X � 	� � as before. Then the estimates ¢�þý�ÿ , ¢�Ìý�ÿ , and ¢� ý�ÿ minimizing

(5.1) are equal to the minimizers of the sum of the squared concentrated residuals

�� � �  �  C���-�<) E A �­ ��¡UA � �k� �  �  *�%�-�<) E A �­ �:¡UA } ��� �  � �k	���� ð ª ñ } �k� �  � � (5.3)

which is obtained by replacing �7� in (5.1) with (5.2). From the name of (5.3), we call ¢�þý�ÿ , ¢�Ìý�ÿ and¢� ý�ÿ the concentrated least squares estimator.

Since � 	 � �uo , we have � � � � � and therefore � � � ÷iø � � � � 	 � �*E A � 	 . So the first order
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conditions of the CLS estimation become�������
Ã �� Æ�Ã �Ã �� Æ%Ã �Ã �� Æ%Ãz�

�������� � H �) �­ �:¡UA
�������

� 	� ÷iø } �� �y# 	X ÷"ø } �Â 	 ÷iø } � } 	��� � � 	 � � E A
�������� �uo@& (5.4)

Interpreting (5.4) as sample moment conditions, we can construct the corresponding (exactly iden-

tified) implicit population moment conditions:t �ì	� ÷iø } �M�No (5.5a)t � �y# 	XU÷iø } �U�uo (5.5b)tÈÂ 	 ÷"ø } � } 	� � � � 	 � � E A �uo�& (5.5c)

That is, the CLS estimator is asymptotically equivalent to the GMM estimator based on (5.5).

The moment conditions (5.5a) and (5.5b) are satisfied under the Orthogonality Assumption.

However, this is not true of (5.5c). The moment conditions (5.5c) require the Covariance Assump-

tion to be valid (unless we make very specific and unusual assumptions about the form of � and its

relationship to the error variance matrix). Thus, the consistency of the CLS estimator requires both

the Orthogonality Assumption and the Covariance Assumption. This is a rather striking result,

since the consistency of least squares does not usually require restrictions on the second moments

of the errors, and is a reflection of the incidental parameters problem.

We would generally believe that least squares should be efficient when the errors are i.i.d.

normal. However, similarly to the result in Ahn, Lee and Schmidt (2001), this is not true in the

present case. The efficient GMM estimator under the Orthogonality and Covariance Assumptions

uses the moment conditions (4.2), while the CLS estimator uses only a subset of these. This can be

seen most explicitly in the case that, conditional on � r �k C����� , the � ��� are i.i.d. normal. Then (4.2b)

is redundant and (4.2a) can be replaced by (4.9), so that the efficient GMM estimator is based on

(4.9a), (4.9b), (4.9c) and (4.2c). The CLS estimator is based on (5.5a), which is the same as (4.9a);
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(5.5b), which is the same as (4.9b); and (5.5c), which is a subset of (4.2c).2 So the inefficiency

of CLS lies in its failure to use the moment conditions (4.9c) and from its failure to use all of the

moment conditions in (4.2c). The latter failure did not arise in the Ahn, Lee and Schmidt (2001)

analysis (see footnote 2).

In Appendix B, we calculate the asymptotic variance matrix of the CLS estimator, under the

“conditional independence of the moments up to fourth order” (CIM4) assumption of Section 4.

6 Empirical Application

This section includes an application of the estimators suggested in previous sections to the mea-

surement of cost efficiency. The application uses panel data from Spanish private and savings banks

covering the period 1992-1998. In order to allow for changes in cost efficiency over time, the in-

dividual effects are modeled in a parametric form as the “inverse” of the exponential time-varying

function proposed by Battese and Coelli (1992) in a MLE framework.

6.1 The cost frontier model

The technology of banks is modeled using the following translog cost function:� ¥ � ����� � ¥ � � ���/���� 	�����k �  � � 
 ����� 
�� ���� 
 �^
 �­ � ¡UA ��
�� � ¥�� � ��� 
 #� �­ � ¡UA �­ � ¡UA ��
���
�� � ¥�� � ��� � ¥�� � ��� 
 �­ � ¡UA ����� � ¥�� � ���

 #� �­ � ¡UA �­ � ¡UA ��������� � ¥�� � ��� � ¥�� � ��� 
 �­ � ¡UA �­ � ¡UA ��
������ � ¥�� � ��� � ¥�� � ��� �

�;>=@? G ����, H #�� K �L� 
�� ���

(6.1)

2The moment conditions (5.5c) are equivalent to !#" 	%$ æ $s	&$ è E A�' Ö �)(+* . When the number of parameters
in , is less than à8â{ç , the transformation " 	&$ æ $�	�$ è E A loses information. This will be so in most parametric
models for -[æ.,%è , though it is not true in the model of Ahn, Lee and Schmidt (2001).
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where
� ��� is observed total cost, �/��� is a vector of outputs, �s��� is a vector of input prices, � is a vector

of parameters to be estimated, � is a scalar to be estimated, and � ��� is the error term. The individual

effects are modeled as the product of an exponential time-varying function � �6�S���-� ;>=@? G ����, H #©� K
and a time-invariant firm effect.

The cost equation (6.1) is estimated using the GMM estimators suggested in previous sections.

We will denote the GMM estimator based on the moment conditions (3.2) by GMM1. Assuming,

in addition, no conditional heteroskedasticity (NCH) we get the GMM2 estimator. The GMM esti-

mator that assumes orthogonality and covariance is denoted by GMM3 and is based on the moment

conditions (4.2). If we impose conditional independence of the moments up to the fourth order we

get the GMM4 estimator which is obtained using (4.9), (4.2b) and (4.2c). We also consider an

estimator that, in addition to GMM4, assumes that the error term is i.i.d. normal.3 This estimator

uses only the moment conditions (4.9) and (4.2c) and we will denote it by GMM5. Thus, as we

go from GMM1 to GMM5 we are relying on stronger and stronger assumptions. The concentrated

least squares estimator that minimizes the objective function (5.3) will be denoted by CLS. As

mentioned above, the CLS uses the same assumptions as GMM3, but the latter is more efficient.

These estimations are also compared with the traditional WITHIN estimator and with the MLE

estimator proposed by Battese and Coelli (1992). In the latter case, additional distributional as-

sumptions must be imposed. In particular, the noise term � ��� is assumed to follow a normal dis-

tribution with mean zero and variance v Bw and the individual effect ��� is assumed to come from

a non-negative truncated normal distribution with zero mean and variance v B� . Since we impose

non-negativity on ��� , the cost equation (6.1) is equivalent to a stochastic cost frontier where the

firm effect ����� is interpreted as an inefficiency term.4 We will denote this estimator by MLE1 in
3Note that CIM4 does not restrict the distribution of the error term to be symmetric and “bell-shaped”.
4For estimation purposes the model above is parameterised in terms of / B and 0 , where / B ( / Bw21 / B�

is the overall variance and 0 ( / Bw43 / B� is a useful indicator of the relative importance of both noise and
inefficiency variances.
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order to distinguish it from a different MLE estimator, which we will consider later.

The WITHIN estimator can be viewed as a restricted version of the GMM1, in that if individ-

ual effects are time-invariant, the consistency of both estimators relies exclusively on the moment

conditions implied by the orthogonality assumptions. The MLE results rely on stronger assump-

tions. In particular, MLE makes the “random effects” assumptions that �i� is independent of the

regressors. Moreover, the individual effects �"� in the MLE model are also restricted to be i.i.d.

half-normal (i.e. to be positive) and � ��� to be i.i.d. normal. None of the other estimators uses

these assumptions, except that GMM3, GMM4, GMM5 and CLS assume white noise, and GMM5

assumes normality.

The model above (6.1) can also be interpreted as a cost frontier in the GMM and CLS frame-

works if the time-varying individual effects �7��� are decomposed into a frontier intercept which

varies over time ( ��� ) and a non-negative inefficiency term ( 5 ��� ). That is:�L����� � �6�S�������M�<�L� 
 5 ��� (6.2)

Following Cornwell, Schmidt and Sickles (1990) the frontier intercept can be estimated as:

¢�L���N£^¤Z¥� � ¢�L���S�R� � ��� ¢�%� º £n¤W¥� � ¢���|� (6.3)

and the inefficiency term as:

¢5 ����� � ��� ¢�%�.9 ¢��� H £^¤Z¥� � ¢�L����DU� � �6� ¢��� ¢5 � (6.4)

Since the dependent variable is expressed in natural logs, cost efficiency indexes can be calculated

from (6.4) as: 6� t ���L� ;>=@?OG�H�� ��� ¢�¯�/9 ¢�L� H £n¤W¥� � ¢���|��DZK (6.5)

As customary, the efficiency indexes in the WITHIN model can be obtained using the expression

(6.5) once ���<o or � �����%�q�l# is imposed. (See Schmidt and Sickles, 1984.)
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It is easy to see from expressions (6.4) and (6.5) that cost efficiency compares the performance

(individual effect) of a particular firm with a firm located on the frontier (i.e. with the minimum

effect). Since cost efficiency is a relative concept, the average efficiency index is thus related to

the estimated variance v B� : the higher the variance of the individual effects, the smaller the average

efficiency.

Note, however, that adjusting the GMM specification to be a frontier yields a model with

a frontier intercept that varies over time (i.e. with technical change) which does not appear in

MLE1. For this reason, we also estimate a MLE estimator with a time-varying intercept which

we will denote MLE2. In this model, the time-varying parametric function � � appears twice:

first, multiplying a non-negative individual effect ( 5 � ) which is assumed to be distributed as a

half-normal, and second, multiplying a constant that is the minimum alpha value obtained using

GMM5.5 That is:� ¥ � ���L� � ¥ � � �7�/���k 8������ �  � � 
�� �������/9î£^¤Z¥� � ¢�L��� 
 5 ��D 
�� ���� 5 �:9�o�& (6.6)

6.2 Data

The application uses yearly data from Spanish saving and private banks. The number of banks

decreased over the last ten years due to mergers and acquisitions. These mergers took place espe-

cially among saving banks and mainly in the early 1990s. In order to work with a balanced panel

data, we use data from 38 private banks and 50 savings banks over the period 1992–98.

The estimations were carried out separately for savings and private banks since they are in-

volved in quite different activities. Savings banks concentrate on retail banking, providing check-

ing, savings and loans service to individuals (especially mortgage loans), whereas private banks

are more involved in commercial and industrial loans. Another difference is the fact that savings
5We have selected this estimator because it is the nearest to MLE and more efficient than CLS.
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banks are more specialized than other banks in long-term loans, which do not require a continu-

ous monitoring. Since the two groups are likely to have different cost structures and have been

regulated in different ways, we analyse the two groups separately rather than pool them.

The variables used in the analysis are defined in the same way for both groups of banks. We

follow the majority of the literature and apply the intermediation approach proposed by Sealey and

Lindley (1977) which treats deposits as inputs and loans as outputs. We include three types of

outputs and three types of inputs. The outputs are: Loans to banks and other profitable assets ( �°A );
Loans to firms and households ( �'B ); and noninterest income ( � Ö ). Using noninterest income goes

beyond the intermediation approach as commonly modeled. We include it in an attempt to cap-

ture off-balance-sheet activities such as securitization, brokerage services, management financial

assets for their customers or mutual funds, which are becoming increasingly important in Spanish

banks. This way of measuring nontraditional banking activities is not fully satisfactory (i.e. we

cannot distinguish between variations due to changes in volumes and variations due to changes

in prices, and noninterest income is partly generated from traditional activities such as fees from

service charges on deposits or credits rather than nontraditional activities). Since comprehensive

information about the amount of off-balance-sheet services is not available, we prefer to describe

them in an approximate way.

The inputs are: Borrowed money, including demand, time and saving deposits, deposits from

non-banks, securities sold under agreements to repurchase, and other borrowed money ( ; A ); Labor,

measured by total number of employees ( ; B ); and Physical Capital, measured by the value of

fixed assets in the balance sheet ( ;[Ö ). All the input prices, �s� ( !^�¿#� >�Ì =< ), were calculated in

a straightforward way by dividing nominal expenses by input quantities. Accordingly, total cost

includes both interest and operating expenses.
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6.3 Empirical results

The parameter estimates of the cost frontiers for savings banks and private banks are presented in

Table 1 and Table 2 respectively.6 Since the variables have been normalized by dividing by the

sample geometric mean, the first order coefficients can be interpreted as the elasticities evaluated

at that point. The standard homogeneity of degree one in input prices is imposed by normalizing

cost and input prices using the price of physical capital as a numeraire.

Since all elasticities are positive at the geometric mean, the estimated cost frontiers are in-

creasing at this point in their variables. These results confirm (positive) monotonicity of both cost

frontiers. Returns to scale can be estimated as one minus the scale elasticity (i.e. the sum of each

output cost elasticity). At the sample mean, the scale elasticity is only a function of the first-order

output parameters. Over the whole estimations, the sum of these parameters is smaller than one for

both savings and private banks. These results indicate the existence of increasing returns to scale

as found in many past analyses of Spanish banks.

Note that we can clearly distinguish two groups of estimators for private banks in terms of the

scale elasticity values. This value ranges from 0.756 to 0.860 using WITHIN and GMM up to

GMM4, whereas it rises over 0.925 using GMM5 and MLE estimators. The scale elasticity values

for the savings banks are more homogeneous. However, they tend to increase as we go from

GMM1 to MLE. In particular, the scale elasticity is less than 0.857 using the WITHIN, GMM1

and GMM3 estimators, whereas it is over 0.90 using other estimators.

The estimated parameters in cost frontier (6.1) can be used to calculate individual indexes of

cost efficiency. These indexes are obtained using expression (6.5), except for the MLE estimator

where we follow Battese and Coelli (1992). This paper allows the computation of estimates of the

individual technical inefficiencies from the estimation of a production function. Here, that model
6The , estimates are reported in Table 3 and Table 4 due to they are mainly related with the results

regarding the efficiency indices.

20



is modified to adjust for estimation of cost efficiency.

Tables 3 and 4 report some results for cost efficiency for private and savings banks respec-

tively. These tables also provide the estimated � value, which allows us to assess variations in cost

efficiency over time.7 The cost efficiency indexes increase or decrease over time on the basis of

the sign of the � ’s. If this parameter is positive (negative), efficiency decreases (increases) and the

differences among firms increase (decrease) due to the exponential functional form of � ���S��� .
The private banks’ average efficiency using the WITHIN estimator is quite similar to that ob-

tained using GMM1. This is reasonable because the consistency of both estimators relies on the

orthogonality assumption, and we cannot reject time-invariant efficiency using GMM1. The av-

erage efficiency from using GMM2 and GMM3 is slightly smaller, but again it is not possible

to reject the null hypothesis that �´� o . Time-invariant efficiency is also not rejected using the

GMM4 estimator, but now private banks’ average efficiency returns to the initial values found

using WITHIN and GMM1.

However, average and time-path efficiency change a lot when the error term is assumed to be

normal.8 The efficiency level at ,R�$# using the GMM5 estimator is 92% but it decreases strongly

over time. Unlike the previous estimators, this means that changes in efficiency over the whole

period are now statistically significant. The results from the CLS and MLE estimators, which also

assume � ��� to be i.i.d. normal, are quite similar to GMM5.9

A quick glance at the correlation coefficients in Table 3 seems to confirm the existence of a

breaking point at GMM4, giving rise to two subsets of estimators. This table shows that correla-

tions between efficiency indices from using estimators belonging their own group are rather high
7Except, obviously, for the WITHIN estimator where time-invariance is imposed on the individual ef-

fects.
8Using the GMM4 estimates, the skewness coefficient > Ö 3 / Bw and the degree of excess >@? 3 / Bw take the

values â *BAC* çED and çEF AHG F respectively. For normal distributions both measures must be zero. Hence, the
GMM4 estimates question the normal distribution assumption used in subsequent estimators.

9Note that the estimated ,4IKJML is quite similar to that found using GMM5 or CLS once the MLE estimator
is adjusted in order to include a time-varying frontier intercept.
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(always over 90%). In contrast, correlations between any estimators belonging to opposite groups

range from 24% to 70%.

The same subset of estimators can be also appreciated in Figure 1 where all individual effi-

ciency indices are graphed according to bank size. Moreover, this figure shows a negative corre-

lation between efficiency and size.10 This correlation disappears when normality assumptions are

added.

On the other hand, an notable feature of Table 4 is that results for savings banks are, in general,

much more homogeneous than those found for private banks. For instance, the average efficiency

at ,-�l# is over 80% and it seems to decrease over time. Whatever the model, the estimated � value

is positive and statistically different from zero.11 Thus we can conclude that time-varying effi-

ciency models will provide more accurate estimates of savings banks’ efficiency than the standard

WITHIN model.

7 Conclusion

In this paper we have considered a panel data model with parametrically time-varying coefficients

on the individual effects. Following Ahn, Lee and Schmidt (2001), we have enumerated the mo-

ment conditions implied by alternative sets of assumptions on the model. We have shown explicitly

that our sets of moment conditions capture all of the useful information contained in our assump-

tions, so that the corresponding GMM estimators exploit these assumptions efficiently.

We have also considered concentrated least squares estimation. Here the incidental parameters

problem is relevant because we are treating the fixed effects as parameters to be estimated. An
10This negative correlation might indicate that big banks are involved in activities not accounted for by

the variables available.
11Note that we cannot reject that , (+* using the MLE1 estimator, which does not include a time-varying

frontier intercept (or technical change). Thus, the difference between , IKJML A and , IKJNL B can be used as an
indicator of the biases caused by omitting the effect of technical change on bank’s costs.
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interesting result is that the consistency of the least squares estimator requires both exogeneity

assumptions and the assumption that the errors are white noise. Furthermore, given the white

noise assumption, the least squares estimator is inefficient, because it fails to exploit all of the

moment conditions that are available.

We show how the GMM estimation problem can be simplified under some additional assump-

tions, including the assumption of no conditional heteroskedasticity and a stronger conditional

independence assumption. Under these assumptions we also give explicit expressions for the vari-

ance matrices of the GMM and least squares estimators.

Finally, we apply the proposed GMM estimations to the measurement of cost efficiency of

Spanish banks over the period 1992–1998. The results seem to suggest, especially for private

banks, the non-fulfilment of the normality assumption on the error term. This questions the validity

of traditional MLE models, which are based on a normality assumption, when examining the

efficiency of Spanish banks.
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APPENDIX

In this Appendix we derive the asymptotic variances of the efficient GMM estimator and the CLS

estimator. We make the “conditional independence of the moments up to fourth order” (CIM4)

assumption of Section 4.

A The asymptotic variance of the GMM estimator

Under the Orthogonality and Covariance Assumptions, the moment conditions we have are � A��-�� 	 } �i� r � , � By�Q� Ò 	 � � 	 } �i� } �|� , and �*Ö �Q� � � 	 � �*E A � 	 } �i� � 	 } � . Let O � � � 	  � 	  *� 	 � 	 . LetÇ � � H t �SÃ � � �SÆ%Ã O � for P � #� >�@ 8< , evaluated at the true parameters. Let « � � � t{� � � � 	 � � forP  EQ
�Ð#% >�@ =< , evaluated at the true parameters. Define R[Ö � t � Ö��� Æ�v Bw and R ? � t � � ?���LH <�v ?w �1Æ~v Bw .
Let SL� � t8r � ; T � T ���%�q� �[�*� 	 � 
 Ó ¤ZÔ%Õz� � B' .&'&'&. � XM� ; and T � � �z�>� 	 � 
 Ó ¤�Ô%ÕI� � BB  '&'&'&( � BX � , where�z� �\� � B. '&'&'&/ � X[� 	 . After some algebra, we get«�AkA-�Nv Bw � � 	 � � ����� � (A.1)«�ASBg�Nv Bw � � 	 � � ����� � 	�� Ò (A.2)«�A Ö �Nv Bw Ø � 	 � � ����� 
 RIÖ� 	 � � T � SL� � Ù (A.3)«zBkBg�Nv Bw Ò 	�9 � 	 � ���Sv B� �[� 	 
 v Bw x XM��D Ò (A.4)«zB Ö �Nv Bw Ò 	VUXW 
 v B� 
 v Bw� 	 � � � 	 � 
 RþÖ� 	 � SM�YT2Z � �\[ (A.5)« ÖkÖ �Nv Bw U 
 v B� 
 v Bw� 	 � � � 	 � 
 � RIÖ� 	 � SM�YT 
 R ?� � 	 � � B T � [ (A.6)

and Ç�A-�V9É� � � ����� ��	 ²U³  �� � � ���È� �k	 ²�¶  Â � � ����� D (A.7)Ç�Bg� Ò 	 � x X E AL� � �.9É� � � ����� � 	 ²U³  �� � � ����� � 	 ²�¶  Rv B� Â � D (A.8)Ç Ö �V9É� � � ����� �k	 ²U³  �� � � ����� ��	 ²�¶  qv B� Â � D�& (A.9)
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With these results, the variance-covariance of the GMM estimator is

ë^] ê ± )c� ¢O H O �R�
������� ��ÇÈ	A  qÇÈ	B  qÇÈ	Ö �

_`````a «MAkA4«MASB¿«MA Ö« 	ASB «þBkB¿«þB Ö« 	A Ö « 	B Ö « ÖkÖ
bNcccccd

_`````a Ç�AÇ�BÇ Ö
bNcccccd
��������
E A & (A.10)

B The asymptotic variance of the CLS estimator

By the standard Taylor series expansion technique, we find that the asymptotic variance will be

equal to e Å>Ç E AÅ e Å where e Å�� t Ã B � �Ã O Ã O 	  and Ç�Å�� t Ã � �Ã O Ã � �Ã O 	 (B.1)

evaluated at the true parameter. Let us calculate each of them. Let Â �uÃ � ���~Å(�1Æ%Ãz� 	 �\�So f ¼ A* Â 	 � � 	 .Ç�Å is the same as in Ahn, Lee and Schmidt (2001, p. 253). Let f � � � � 	 � �*E A T º � � 	 � �*E A � 	 ;f � � � � � 	 � �CE A T � � � 	 � �*E A � 	 ; and S�� � t ��� . Thent Ã � �Ã � Ã � �Ã � 	 �hg�v Bw ² 	³ � ÷iø � ����� � ²U³ (B.2)t Ã � �Ã � Ã � �Ã � 	 �hg�v Bw ² 	³ � ÷iø � ����� � ²�¶ (B.3)t Ã � �Ã � Ã � �Ãz� 	 �hg�v Bw ² 	³ji ÷iø � ����� 
 RIÖ� 	 � � f � SL� �lk Â (B.4)t Ã � �Ã � Ã � �Ã � 	 �hg�v Bw ² 	¶ � ÷iø � ����� � ²�¶ (B.5)t Ã � �Ã � Ã � �Ãz� 	 �hg�v Bw ² 	¶ i ÷iø � ����� 
 RIÖ� 	 � � f � SL� � k Â (B.6)t Ã � �Ãz� Ã � �Ãz� 	 �hg�v Bw Â 	YU 
 v B� 
 v Bw� 	 � � ÷"øn
 � RIÖ� 	 � S��Yf 
 R ?� � 	 � � B f �B[ Â & (B.7)e Å is obtained from the following.t Ã B � �Ã � Ã O 	 �<�I9 ² 	³ � ÷"ø � ���È� � ²U³  ² 	³ � ÷iø � ����� � ²�¶  ² 	³ � ÷"ø � ����� � Â D (B.8)t Ã B � �Ã � Ã O 	 �<�I9 ² 	¶ � ÷"ø � ���È� � ²U³  ² 	¶ � ÷iø � ����� � ²�¶  ² 	¶ � ÷iø � ����� � Â D (B.9)t Ã B � �Ãz�%Ã O 	 �<�I9 Â 	�� ÷iø � � 	 ��� � ²U³  Â 	�� ÷"ø � � 	 ��� � ²�¶  Fv B� Â 	 ÷iø Â D�& (B.10)
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Table 1. Estimated coefficients. Private Banks

WHITIN GMM1 GMM2 GMM3 GMM4 GMM5 CLS MLE1 MLE2
Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-statmn opq r st t st rt tq r sq u tv rvq q r sw x vq r xwq rw w y t t rv zq r sq z v y r xtq r sv v vq r y xq r sv { s z r x {q r s { y v x r utq r s y y yv rw zmn o|q rv t w w u r x yq rv w t tv r { zq rv wq t x rvq q r s y z t w rv {q rv w w v w rv sq rv v x w u r s zq rv y y w u rv uq rv v w st r z {q rv y u s y r {vmn o}q rq uv s rt yq rq v sq r {vq rq yv w r yvq rt uw s r xtq rq xt y rt sq rt s x u r s {q rt w s { rv sq rt s y x r { sq rt w { x r { {mn ~ pq r utv x s rq yq r { yt s y rt uq r { {q { { r xwq r uq u w w r { yq r utv { { r s {q r { x x v y rq {q r { u u v s r { {q r u u { u z r { {q r { { { yv r x ymn ~ |q rw y { t { r ywq r sw { tq r u xq r sq s t { r u xq rw u s { r zq q rw v z t x rw uq rw x x t v r {vq rw z s t v r {q q rwq u t y rq vq r sq z t z rt zr y � mn op �|q rt zq t s r s sq rt { y y r x yq rt { y t s r s yq rwq s u r s yq rt x { t z r s zq rt u z t w rtvq rt xv t w rw xq rt { x t w r y sq rt { z t s r { sr y � mn o| �|q rq v { t rq uq rtq uq r z uq rwq q s r xt�q rq x x� t rq v �q rq q t�q rq yq rt zw s r uvq rt t u w rw {q rq xw t r x sq rt wq w r xwr y � mn o} �|q rt sv w rv sq rt {q t r {tq rt st w r y yq r s u y s rv zq rq {t t r { yq rt u { s rq zq rtq y t r xwq rt w v w r s {q rtq v w rw wr y � mn ~ p �|q rt yq v rt w�q rq t u�q r s sq rq {w t r uq �q rt t y� t r y {q rq zv s r utq rt t t w r z uq rq z s w rv vq rtv y v rw zq rtq q s rw tr y � mn ~ | �| �q rq yt�q r u u�q rw x s� w r st�q rq yw�q r x {�q rv t u� s rt {�q rt z z� v r s xq rq q tq rq t�q rq st �q rv vq rq w tq r s y�q rq t x�q r sqmn o p mn o | �q rq { s� s rq x�q rq s x�q r x z�q rt tv � y r swq rq s {q r zq �q rq {v � v r { x�q rq xq � s r uq �q rq x y� s r x x�q rq u x� s r xw�q rq x s� v r x ymn o p mn o } �q rt w w� y rwq �q rq zw� w rq y�q rq w {� t rt z�q rt z z� v r sw�q rt t t� { r z z�q rq uv � w r z {�q rq { y� w r y y�q rq u x� s rv u�q rq y z� s rt wmn o p mn ~ pq rq yv v rt xq rq u y s rv sq rq { y y r swq rq v z t r xwq rq { { u rw xq rq xv { r ytq rq z y u rw xq rq uv y r z uq rq zq x rv {mn o p mn ~ | �q rq v z� w rw x�q rtv x� s r u x�q rtq s� y r uv �q rtv u� s rv w�q rq x s� y r y u�q rq zv � v rv {�q rt t s� y rw z�q rq xq � v rq z�q rtq {� y r z smn o | mn o }q rq q zq rw t�q rq x z� t rq v �q rq x u� t r z u�q rq v x�q r {tq rq { x w r yt�q rtq z� w r sv �q rq vq �q r x {�q rq t z�q rv u�q rq v s� t rt wmn o | mn ~ p �q rq q v �q rt u�q rq z u� w rt uq rq t xq r { {�q rtv z� w r z zq rq tq q r y zq rq q q �q rq t�q rq w {�q r z u�q rq t {�q r uq �q rq w v � t rq wmn o | mn ~ |q rq x u w rt xq rwv s s rt tq rq w yq r {tq rw y y s rw xq rq y { w rtq q rq v sq r z {q rq uq t r y {q rq u { w rq vq rq u s t r z smn o } mn ~ p �q rq s x� t r y yq rq q vq rtq �q rq ut� w r {vq rq z z w rq z�q rq { s� s r u u�q rq yv � w rq v �q rq v y� t r uq �q rq s u� t r {q �q rq y s� w rv ymn o } mn ~ | �q rq t y�q r sw�q rq v x�q r { {q rtq w w rw u�q rq w z�q r s sq rq yw t r uwq rq v sq r x xq rq v sq r x {q rq t uq rvq q rq v y t rq zmn ~ p mn ~ |�q rq v u� t rt {q rt t x w rq vq rq q {q rtvq rwv y w r z uq rq vq t rv w�q rq s x�q r x u�q rq t y�q r s s�q rq uv � t r zv �q rq w y�q r { u

Intercept x r u { z t t rtv z rv t u s x r y y tq rv u s v r { z z r u y x s s r x { z r xw y yv { rq q z r x sv yq { rv v z r { x u u uw rq z z r x y { uq t rq u� | � q r y xt w q rq st u q rq q s u q rq q v { q rq q yv q rq q y z� | � q rq q v w q rq q q y q rq q t t q rq q t t q rq q t t q rq q q x

Obj. Func. w t rv v y t x r x sw w { r yt s tq rq u u q rq q v y v {v r { z yq w r z u
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Table 2. Estimated coefficients. Saving Banks

WHITIN GMM1 GMM2 GMM3 GMM4 GMM5 CLS MLE1 MLE2
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Intercept z r z { x t sq r xv z r u xq t x u r zq z r z {w z { r {q z r uv y yv v r y u z r u y z yw x rq { z r xtv s zt rv s z r yq v { {t r x s z r u u z x s y r s y� | � q rq x x x q rq tq w q rq t t { q rq w y s q rq t z y q rq t t w� | � q rq q t { q rq q q s q rq q q s q rq q q w q rq q q u q rq q q {

Obj. Func. w x r yw { w u r { zv s z rwv u t w rw st q rq q sw { { x rq { uq { rq x
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Table 3. Estimated efficiency levels. Private Banks

Average Efficiency Spearman Rank Correlation Coefficient
Estimator �� � �� � �� ��� WITHIN GMM1 GMM2 GMM3 GMM4 GMM5 CLS MLE1 MLE2
WITHIN ��� � ��� � ��� � �� �
GMM1 � �� � � �� � ��� �&� �� � �� � �� � �� �
GMM2 �� � � � �� � � �� �&� �� � � � � �� � � �� � �� �

GMM3 � �� � � �� � � �� � �� � � � �� � � �� � � � �� � �� �

GMM4 � �� � � �� � � �� � �� � � � � �� � � �� � � �� � �� � � �� �

GMM5 � �� � � �� � � �� � �� � � �� � �� � � �� � � �� � � �� � � �� � �� �

CLS � �� � � �� � � �� � �� � � � � � �� � � �� � � �� � � � � � � � � � � �� � �� �

MLE1 � �� � � �� � � �� � �� � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � �� �

MLE2 � �� � � �� � �� � � �� �� � � � �� � � �� � � �� � � �� � � �� � � �� � �� � � � �� � �� �

Note:� indicates that we can reject the null hypothesis � ��� � � at 1% level.
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Table 4. Estimated efficiency levels. Saving Banks

Average Efficiency Spearman Rank Correlation Coefficient
Estimator �� � �� � �� �� WITHIN GMM1 GMM2 GMM3 GMM4 GMM5 CLS MLE1 MLE2
WITHIN � �� � � �� � � �� � �� �
GMM1 � �� � � �� � � �� � �� � � � � � �� � �� �
GMM2 � �� � � �� � � �� � �� �� � � � �� � �� � � �� �

GMM3 � �� � � �� � � �� � �� � � � � � �� � � �� � � �� � �� �

GMM4 � �� � � �� � � �� � �� � � � � � �� � � �� � � �� � � �� � �� �

GMM5 � �� � � �� � � �� � �� � �� � � �� � � �� � � �� � � �� � � �� � �� �

CLS � �� � � �� � � �� � �� � � � � � �� � �� � � � �� � � �� � � �� � � �� � �� �

MLE1 � �� � � �� � � �� � �� � � � �� � � � �� � � � � � � �� � � �� � � �� � � �� � �� �

MLE2 � �� � � �� � � �� � �� � � � � � �� � �� � � � �� � � �� � � �� � � �� � � �� � � �� � �� �

Note:� indicates that we can reject the null hypothesis � ��� � � at 1% level.
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