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1 Introduction
In this paper we consider the model:
yir = X8+ Ziy+ (i + €, i=1,...,N, t=1,...,T. (1.1)

We treat T’ as fixed, so that “asymptotic” means as N — oo. The distinctive feature of the model
is the interaction between the time-varying parametric function \;(f) and the individual effect ;.
We consider the case that the «; are “fixed effects,” as will be discussed in more detail below. In
this case estimation may be non-trivial due to the “incidental parameters problem” that the number
of o’s grows with sample size; see, for example, Chamberlain (1980).

Models of this form have been proposed and used in the literature on frontier productions func-
tions (measurement of the efficiency of production). For example, Kumbhakar (1990) proposed
the case that \;(0) = [1 + exp(61t + 02t?)] !, and Battese and Coelli (1992) proposed the case
that \,(0) = exp (— 6(t — T')). Both of these papers considered random effects models in which
«; 1s independent of X and Z. In fact, both of these papers proposed specific (truncated normal)
distributions for the «;, with estimation by maximum likelihood. The aim of the present paper is
to provide a fixed-effects treatment of models of this type.

There is also a literature on the case that the )\; themselves are treated as parameters. That is,

the model becomes:
yzt:letﬁ—l—Zz"y+)\tal+ezt, 7,:1,,N,t:1,,T (12)

This corresponds to using a set of dummy variables for time rather than a parametric function
A(6), and now A\;v; is just the product of fixed time and individual effects. This model has been
considered by Kiefer (1980), Holtz-Eakin, Newey and Rosen (1988), Lee (1991), Chamberlain
(1992), Lee and Schmidt (1993) and Ahn, Lee and Schmidt (2001), among others. Lee (1991) and

Lee and Schmidt (1993) have applied this model to the frontier production function problem, in
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order to avoid having to assume a specific parametric function A;(f). Another motivation for the
model is that a fixed-effects version allows one to control for unobservables (e.g. macro events)
that are the same for each individual, but to which different individuals may react differently.

Ahn, Lee and Schmidt (2001) establish some interesting results for the estimation of model
(1.2). A generalized method of moments (GMM) estimator of the type considered by Holtz-Eakin,
Newey and Rosen (1988) is consistent given exogeneity assumptions on the regressors X and Z.
Least squares applied to (1.2), treating the «; as fixed parameters, is consistent provided that the
regressors are strictly exogenous and that the errors €;; are white noise. The requirement of white
noise errors for consistency of least squares is unusual, and is a reflection of the incidental param-
eters problem. Furthermore, if the errors are white noise, then a GMM estimator that incorporates
the white noise assumption dominates least squares, in the sense of being asymptotically more ef-
ficient. This is also a somewhat unusual result, since in the usual linear model with normal errors,
the moment conditions implied by the white noise assumption would not add to the efficiency of
estimation.

The results of Ahn, Lee and Schmidt apply only to the case that the \; are unrestricted, and
therefore do not apply to the model (1.1). However, in this paper we show that essentially the same
results do hold for the model (1.1). This enables us to use a parametric function \;(#), and to test
the validity of this assumption, while maintaining only weak assumptions on the «;. This may be
very useful, especially in the frontier production function setting. Applications using unrestricted
A+ have yielded temporal patterns of efficiency that seem unreasonably variable and in need of
smoothing, which a parametric function can accomplish.

The plan of the paper is as follows. Section 2 restates the model and lists our assumptions.
Section 3 considers GMM estimation under basic exogeneity assumptions, while Section 4 con-
siders GMM when we add the conditions implied by white noise errors. Section 5 considers least

squares estimation and the sense in which it is dominated by GMM. In Section 6, this methodology



is applied to the measurement of cost efficiency of Spanish banks. Finally, Section 7 contains some

concluding remarks.

2 The model and assumptions

The model is given in equation (1.1) above. We can rewrite it in matrix form, as follows. Let
vi = (Wit -, yir)s Xi = (X, ..., Xir)', and €; = (€51, .., €)' Thus y; is T x 1, X; is T x K,
€isT x 1, B1is K x 1,vis g X 1, and q; is a scalar. (In this paper, all the vectors are column
vectors, and the data matrices are “vertically tall.”) Define a function A : © — R”, where O is a
compact subset of RP, such that A(#) = (A1(6), ..., Ar(6))". Note that T is fixed. In matrix form,
our model is:

A(#) must be normalized in some way such as A(f)'A(f) = 1 or A\;(f) = 1, to rule out trivial
failure of identification arising from A\(f) = 0 or scalar multiplications of A(f). Here we choose
the normalization A, (#) = 1.

Let W; = (Xj;,-.., X/, Z])". We make the following “orthogonality” and “covariance” as-

sumptions.
Assumption 1 (Orthogonality). E(W/, «;)'e; = 0.
Assumption 2 (Covariance). Fe;e, = o21I7.

Assumption 1 says that €;; is uncorrelated with «;, Z;, and X1, . .., X;r, and therefore contains
an assumption of strict exogeneity of the regressors. Note that it does not restrict the correlation
between «; and [Z;, X;1, ..., X;r], so that we are in the fixed-effects framework. Assumption 2
asserts that the errors are white noise.

We also assume the following regularity conditions.
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Assumption 3 (Regularity).
() (W], a, €)' is independently and identically distributed over i;
(ii) €; has finite fourth moment, and Ee; = 0;
(iii)y (W, ;)" has finite nonsingular second moment matrix;

(iv) EW(Z], o) is of full column rank;

(v) X(0) is twice continuously differentiable in 0.

The first four of these conditions correspond to assumptions (BA.1)-(BA.4) of Ahn, Lee and

Schmidt (2001), who give some explanation. Condition (v) is new, and self-explanatory.

3 GMM under the Orthogonality Assumption

Let uy = uu(B,7) = ya — XiB — Ziy, and u; = w;(B,7) = (us,...,uir). Since uy =
A (0)a; + €5, it follows that uy — \(0)u;1 = €z — A\i(0)€;1, which does not depend on «;. This
is a sort of generalized within transformation to remove the individual effects. The Orthogonality

Assumption (Assumption 1) then implies the following moment conditions:

EWZ[uzt(ﬁ, ’}’) —_ )\t(ﬁ)uzl(ﬁ, ’Y)] = 0, t = 2, ceey T (31)

These moment conditions can be written in matrix form, as follows. Define G(0) = [—A.(0), I7_1]',

where A\, = (Mg,..., Ar)". The generalized within transformation corresponds to multiplication

by G(6)', and the moment conditions (3.1) can equivalently be written as follows:
Ebyi(8,7,0) = E[G(0)'uwi(8,7) ® Wi] = 0. (3.2)

(This corresponds to equation (7) of Ahn, Lee and Schmidt (2001), but looks slightly different
because our I is a column vector whereas theirs is a row vector.) Thisis asetof (7" — 1)(TK + g)

moment conditions.



Some further analysis is needed to establish that (3.2) contains all of the moment conditions
implied by the Orthogonality Assumption. Let Sy = EW; W/, Swo = EW,;y, and 02 = Ea;.
Given the model (2.1), the Orthogonality Assumption holds if and only if the following moment
conditions hold:

Elu;(8,7) ® Wi — A(6) ® Swa] = 0. (3.3)

We could use these moment conditions as the basis for GMM estimation. Alternatively, we can
remove the parameter Xy, by applying a nonsingular linear transformation to (3.3) in such a way
that the transformed set of moment conditions is separated into two subsets, where the first subset
does not contain Yy, and the second subset is exactly identified for Yy ,, given (5,7,6). The

following transformation accomplishes this.

G'®1,
E [UZ ® Wz - A X ZWa] =0 (34)

N® I,
where d = T'K + g for notational simplicity; similarly, G, A and u; are shortened expressions for
G(0), M) and u;(8,y). This is a nonsingular transformation, since (G, \) is nonsingular, and

therefore GMM based on (3.4) is asymptotically equivalent to GMM based on (3.3). Now split

(3.4) into its two parts:

E(G'w @ Wi) =0 (3.5)

ENu))W; = (NA)Swa = 0. (3.6)

Here (3.6) is exactly identified for X4, given 3, v and 0, in the sense that the number of moment
conditions in (3.6) is the same as the dimension of Xy ,. Also Xy, does not appear in (3.5). It fol-
lows (e.g., Ahn and Schmidt (1995), Theorem 1) that the GMM estimates of 3, v and € from (3.5)
alone are the same as the GMM estimates of (3, v and € if we use both (3.5) and (3.6), and estimate
the full set of parameters (3,7, 6, Xwq). But (3.5) is the same as (3.2), which establishes that (3.2)

contains all the useful information about /3, v and 6 implied by the Orthogonality Assumption.
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Let b1(3,7,0) = Nt Zf\il b1;(B,7,0). Then the optimal GMM estimator B, 4, and 6 based

on the Orthogonality Assumption solves the problem

min Nb; (8,7, 6)'Vi7'b1 (8,7, 0) (3.7)

Byv,0
where Vi1 = FEby;b); evaluated at the true parameters. As usual, Vi; can be replaced by any

consistent estimate. A standard estimate would be
. 1 . <
Vii=— Y bu(B,7,0)bu(8,7,0) (3.8)

where (3, 7, §) is an initial consistent estimate of (3,7, #) such as GMM using identity weighting
matrix. Under certain regularity conditions (Hansen (1982), Assumption 3) the resulting GMM
estimator is v/ /N-consistent and asymptotically normal.

To express the asymptotic variance of the GMM estimator analytically, we need a little more
notation. Let Sx be the T(TK + g) x K selection matrix such that X; = (It ® W;)'Sx, and let
Sz bethe T(TK + g) x g selection matrix such that 177 = (Ir @ W;)'Sz. Sx and Sz have the

following forms:

Sx =Ug O -+ OOgxg:OIg -+ OOgyxg:---:00 -+ Ix Ogy,) (3.9)
SZ = (ngK e ngK -lg Tt EngK T ngK -lg)l = 1T (3¢ (ngTKa-lg)l (310)
where O’s without dimension subscript stand for Ok k. Define A, = 0A.(6)/00'. The variance

of the asymptotic distribution of the GMM estimates of 3, v and 6 equals (B}V;;'B;)~! where

Vi1 = Eby;b); as above and
By = [(G ® EWW)ISX’ (G ® EVVW)ISZa A ® EWoz]- (3.11)

This result can be obtained either by direct calculation, or by applying the chain rule to B; calcu-
lated in Ahn, Lee and Schmidt (2001, p. 251). This asymptotic variance form is obtained from the

Orthogonality Assumption only and does not need any further assumption.
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A practical problem with this GMM procedure is that it is based on a rather large set of moment
conditions. Some considerable simplifications are possible if we make the following assumption

of no conditional heteroskedasticity (NCH) of ¢;:
E(eie;|Wi) = Bee. (NCH)
Under the NCH assumption,
Vir = E[G(8) i G(60) © WiW!] = G(60)'EecG(60) ® Sy (3.12)

Yww can be consistently estimated by Sww = N1 ZZ]\; . WiW/!. Also, for any sequence (S, Yn)

that converges in probability to (5o, 7o), we have

| X
N D i By, )i (B, IN)' 5 See + 02 A (00) A(6o)'- (3.13)
i1

Since G(6)'A(#) = 0, for any initial consistent estimate (3, 7, 6),

( Zu ) (3.14)

will consistently estimate G(6y)'X..G(6y). Thus it is easy to construct a consistent estimate of V3,
as given in (3.12).

In order to consistently estimate the asymptotic variance under NCH, we need to estimate
Yww, Ywa, and G'YG. Estimation of Yy and G'E..G was discussed above. We can obtain

an estimate of Xy, from the GMM problem (3.4). A direct algebraic calculation gives us that

N Sre N

Siva = %Z_; WAA—Z - %2_; WIVELG(GE.G)  Clad/ (V) (3.15)

where 4; = u;(8,7), A = M), G = G(6), and N3G is a consistent estimate of \'S..G, one
possibility of which is N~ SN VG

Finally, under the NCH assumption, the set of moment conditions (3.2) can be converted into

an exactly identified set of moment conditions that yield an asymptotically equivalent GMM es-

timate. Specifically, we can replace the moment conditions £b;; = 0 by the moment conditions
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EB] Vﬂlbli = 0. Routine calculation using the forms of By, Vi, and by; yields the explicit expres-

sion:

EX!G(G'S.G) 'G'u; = 0 (3.16a)
EZ15G(G'SeG)'G'u; = 0 (3.16b)
EY SitwWi - AL(G'SeG) ' G'u; = 0. (3.16¢)

These three sets of moment conditions respectively correspond to (21a), (21b), and (21c) of Ahn,
Lee and Schmidt (2001, p. 229). We can replace the nuisance parameters ..., Xy, and Xyw
by consistent estimates, as given above (based on some initial consistent GMM estimates of [,
v and ). The point of this simplification is that we have drastically reduced the set of moment
conditions: there are (7'—1)(7T K + g) moment conditions in b;; (equation (3.2)) but only K +g+p
moment conditions in (3.16).

We note that this is a stronger result than the corresponding result (Proposition 1, p. 229) of
Ahn, Lee and Schmidt (2001). In order to reach essentially the same conclusion on the reduction of
the number of moment conditions, they impose the assumption that ¢; is independent of (W;, «;),

a much stronger assumption than our NCH assumption.

4 GMM under the Orthogonality and Covariance Assumptions

In this section we continue to maintain the Orthogonality Assumption (Assumption 1), but now we
add the Covariance Assumption (Assumption 2), which asserts that Ee;e;, = af]T.

Clearly the Covariance Assumption holds if and only if
E(uu)) = 022N + oIy (4.1)

Condition (4.1) contains 7°(7" + 1) /2 distinct moment conditions. It also contains the two nuisance

parameters o2 and o2, and so it should imply 7'(7T +1) /2 — 2 moment conditions for the estimation

9



of 3, v and f. These are in addition to the moment conditions (3.2) implied by the Orthogonality
Assumption.

To write these moment conditions explicitly, we need to define some notation. Let H =
diag(Hs, Hs, ..., Hr), with H; equal to the 7' x (T — t) matrix of the last 7" — ¢ columns (the
(t 4+ 1)th through T'th columns) of Ir for t < T, and with Hr equal to a T x (T — 2) matrix of
the second through (7' — 1)-th columns of I7." Then we can write the distinct moment conditions

implied by the Orthogonality and Covariance Assumptions as follows:

Ebyi = E(G'u; @ W;) = 0 (4.2)
’ /\'ui

(In these expressions, G is short for G(6), A is short for A(#), and u; is short for u; (3, 7).)

The moment conditions by; in (4.2a) are exactly the same as those in (3.2) of the previous
section, and follow from the Orthogonality Assumption.

The moment conditions by; in (4.2b) correspond to those in equation (12) of Ahn, Lee and
Schmidt (2001). Note that it is not the case that E(G'u; ® u;) = 0. Rather, looking at a typical
element of this product, we have E(u;; — A\yu;1)u;s, which equals zero for s # ¢ and s # 1. The
selection matrix H' picks out the logically distinct products of expectation zero, the number of
which equals 7'(7 — 1)/2 — 1. The selection matrix H plays the same role as the definition of the
matrices Uj; plays in Ahn, Lee and Schmidt (2001). We note that the moment conditions by; follow
from the non-autocorrelation of the ¢;;; homoskedasticity would not be needed.

The (7' — 1) moment conditions in bg; in (4.2¢) correspond to those in equation (13) of Ahn,

Lee and Schmidt (2001). They assert that, fort = 2,..., T, E(uy — )\tuﬂ)(zz;l Astiis) = 0, and

'For any matrix B with T' rows, H{B selects the last T" — ¢ rows of B for t < T', and H’TB selects the
second through (7" — 1)-th rows of B. For any matrix B with T’ columns, B H; selects the last 7' — ¢ columns
of B fort < T, and BHr selects the second through (7" — 1)-th columns of B.
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their validity depends on both the non-autocorrelation and the homoskedasticity of the €;;.
Some further analysis may be useful to establish that (4.2b) and (4.2c) represent all of the useful
implications of the Covariance Assumption. We begin with the implication (4.1) of the Covariance

Assumption, which we rewrite as
E(u; ® u;) = 02(A® \) + o2vecly. (4.3)

Now, let S be the T2 x T'(T + 1)/2 selection matrix such that, for a T x 1 vector u, vech(uu') =

S’(u ® u), where “vech” is the vector of distinct elements. Then
ES'(u®u) = S[o2(A® A) + ovecly] (4.4)

contains the distinct moment conditions.

Now we transform the moment conditions (4.4) by multiplying them by a nonsingular matrix,
in such a way that (3) the first 7(7' + 1) /2 — 2 transformed moment conditions are those given in
(4.2b) and (4.2¢); and (22) the last two moment conditions are exactly identified for the nuisance
parameters (02 and o?), given the other parameters. This will imply that the last two moment
conditions are redundant for the estimation of 3, v and 6, and thus that (4.2b) and (4.2¢) contain
all of the useful information implied by the Covariance Assumption for estimation of 3, v and 6.

To exhibit the transformation, let G; be the (¢ — 1)th column of G let e equal the ¢th column

of It 5 and er equal the last column of I7; and define
(Hf") = [-ArHy, ejer, ..., ep_sep, Ow—a)xr]- 4.5)
(H7 was defined above.) Then
[Go® Hy, ..., Gr 1 ® Hp 1, H}'S - 8'(u; @ u;) = H'(G' @ I7)(u; ® u;), (4.6)

which is the same as in by; in (4.2b). Also, let J; = Iz — AX and J}, t = 2,...,T, is equal to

diag{Oyxt, Adlr 4} plus a T x T matrix with zero elements except for the ¢th row which is \'.
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Then

Hi[Jf, ..., JF]S - S (u; @ u) = (N @ G (u; ® uy), 4.7)

which is equal to bs; in (4.2¢).

The point of the above argument is that the transformations preceding S’(u; ® ;) in (4.6) and
(4.7), stacked vertically, construct a [T'(T + 1)/2 — 2] x T(T + 1)/2 matrix of full row rank, and
yield the moment conditions by; and b3;. The remaining two moment conditions that determine the

nuisance parameters are
5 u _ o2 + o2 “5)
Usols Ao
and must be linearly independent of the others (since they involve o2 and o while the others do
not).

The asymptotic variance of the GMM estimate is complicated because it depends on the mo-
ments of €;; up to fourth order. However, we can simplify things with the following “conditional
independence of the moments up to fourth order” (CIM4) assumption:

Conditional on (W;, o), €;; is independent over ¢t = 1,2, ..., T, with mean

zero, and with second, third and fourth moments that do not depend on (CIM4)

(Wi, a;) or on t.
This is a strong assumption; it implies the Orthogonality Assumption, the Covariance Assumption,
the NCH assumption, and more. In Appendix A, we calculate the asymptotic variance matrix of
the GMM estimate based on (4.2) under the assumption (CIM4).

Let A = OA(6p)/00 and note that A, = G'A. Given assumption (CIM4), the moment condi-

tions (3.16), which are asymptotically equivalent to (4.2a), can be simplified as follows:

EX!Pgu; =0 (4.92)
EXy o Sk Wi - A Pau; = 0. (4.9¢)
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That is, in place of the large set of moment conditions (4.2a), (4.2b) and (4.2c), we can use the
reduced set of moment conditions consisting of (4.9), (4.2b) and (4.2c¢).

A final simplification arises if, conditional on (W, «;), €;; is i.i.d. normal. In this case, (4.2b)
can be shown to be redundant given (4.2a) and (4.2¢). (See Proposition 4 of Ahn, Lee and Schmidt
(2001, p. 231).) Hence, in that case, the GMM estimator using the moment conditions (4.9) and

(4.2c¢) is efficient.

5 Least Squares

In this section we consider the concentrated least squares (CLS) estimation of the model. We treat
the «; as parameters to be estimated, so this is a true “fixed effects” treatment. We can consider

the following least squares problem:

N
min N [y - Xif — 10 Zly = MO)ail' [ys — XiB — 10 Zjy — A(O)ai].  (5.1)
B.v,0,a1,...,an P
Solving for o, . . ., ay first, we get

ai(B,7,0) = XO) MO AO) wi(B,7) i=1,...,N. (5.2)

where u;(8,v) = y; — X8 — 1pZ/7y as before. Then the estimates BLS, YLs, and éLS minimizing

(5.1) are equal to the minimizers of the sum of the squared concentrated residuals

N N
é(ﬁa Y, 0) = Nil Z Cz(ﬂa Y, 0) = Nil Z uz(ﬁa V)IM)\(G)Ui(Ba 7) (53)

i=1 i=1
which is obtained by replacing «; in (5.1) with (5.2). From the name of (5.3), we call B s> Yrs and

0r, s the concentrated least squares estimator.

Since G'\ = 0, we have M,G = G and therefore My = Pg = G(G'G)~'G". So the first order
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conditions of the CLS estimation become

oC /0B X|Pgu,;
N
_ 2
aC/oy | =—~ D 71, Pou; = 0. (54)
=1
o0C /08 N Peuul A(N'X) ™1

Interpreting (5.4) as sample moment conditions, we can construct the corresponding (exactly iden-

tified) implicit population moment conditions:

EX!Pgu; =0 (5.52)
EZ14Pgu; = 0 (5.5b)
EN PguauilA(NN) ™ = 0. (5.5¢)

That is, the CLS estimator is asymptotically equivalent to the GMM estimator based on (5.5).

The moment conditions (5.5a) and (5.5b) are satisfied under the Orthogonality Assumption.
However, this is not true of (5.5¢). The moment conditions (5.5¢) require the Covariance Assump-
tion to be valid (unless we make very specific and unusual assumptions about the form of A and its
relationship to the error variance matrix). Thus, the consistency of the CLS estimator requires both
the Orthogonality Assumption and the Covariance Assumption. This is a rather striking result,
since the consistency of least squares does not usually require restrictions on the second moments
of the errors, and is a reflection of the incidental parameters problem.

We would generally believe that least squares should be efficient when the errors are i.i.d.
normal. However, similarly to the result in Ahn, Lee and Schmidt (2001), this is not true in the
present case. The efficient GMM estimator under the Orthogonality and Covariance Assumptions
uses the moment conditions (4.2), while the CLS estimator uses only a subset of these. This can be
seen most explicitly in the case that, conditional on (W;, «;), the €;; are i.i.d. normal. Then (4.2b)
is redundant and (4.2a) can be replaced by (4.9), so that the efficient GMM estimator is based on

(4.9a), (4.9b), (4.9¢) and (4.2¢). The CLS estimator is based on (5.5a), which is the same as (4.9a);
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(5.5b), which is the same as (4.9b); and (5.5c), which is a subset of (4.2c).? So the inefficiency
of CLS lies in its failure to use the moment conditions (4.9¢) and from its failure to use all of the
moment conditions in (4.2c). The latter failure did not arise in the Ahn, Lee and Schmidt (2001)
analysis (see footnote 2).

In Appendix B, we calculate the asymptotic variance matrix of the CLS estimator, under the

“conditional independence of the moments up to fourth order” (CIM4) assumption of Section 4.

6 Empirical Application

This section includes an application of the estimators suggested in previous sections to the mea-
surement of cost efficiency. The application uses panel data from Spanish private and savings banks
covering the period 1992-1998. In order to allow for changes in cost efficiency over time, the in-
dividual effects are modeled in a parametric form as the “inverse” of the exponential time-varying

function proposed by Battese and Coelli (1992) in a MLE framework.

6.1 The cost frontier model
The technology of banks is modeled using the following translog cost function:

In Cit = In C*(git, wit, 7, B) + it + €3t

m m m n
1
= (’Y + ; Ba; In gjie + 5 3D ByaIngjieInguie + ; By In Wit

j=1 1=1

1 n n m n
) JLIRITIRITTIES ) DRI

k=1 h=1 j=1 k=1

6.1)

+ exp (H(t — 1))a,~ + €

2The moment conditions (5.5¢) are equivalent to EA’G(G'G)~1b3; = 0. When the number of parameters
in @ is less than T'— 1, the transformation A’G(G'G) ! loses information. This will be so in most parametric
models for A(6), though it is not true in the model of Ahn, Lee and Schmidt (2001).
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where C'; is observed total cost, ¢;; is a vector of outputs, w;, is a vector of input prices, [ is a vector
of parameters to be estimated, -y is a scalar to be estimated, and ¢;; is the error term. The individual
effects are modeled as the product of an exponential time-varying function A;(6) = exp (6(¢t — 1))
and a time-invariant firm effect.

The cost equation (6.1) is estimated using the GMM estimators suggested in previous sections.
We will denote the GMM estimator based on the moment conditions (3.2) by GMM1. Assuming,
in addition, no conditional heteroskedasticity (NCH) we get the GMM2 estimator. The GMM esti-
mator that assumes orthogonality and covariance is denoted by GMM3 and is based on the moment
conditions (4.2). If we impose conditional independence of the moments up to the fourth order we
get the GMM4 estimator which is obtained using (4.9), (4.2b) and (4.2c). We also consider an
estimator that, in addition to GMM4, assumes that the error term is i.i.d. normal.®> This estimator
uses only the moment conditions (4.9) and (4.2c) and we will denote it by GMMS5. Thus, as we
go from GMM1 to GMMS5 we are relying on stronger and stronger assumptions. The concentrated
least squares estimator that minimizes the objective function (5.3) will be denoted by CLS. As
mentioned above, the CLS uses the same assumptions as GMM3, but the latter is more efficient.

These estimations are also compared with the traditional WITHIN estimator and with the MLE
estimator proposed by Battese and Coelli (1992). In the latter case, additional distributional as-
sumptions must be imposed. In particular, the noise term €;; is assumed to follow a normal dis-
tribution with mean zero and variance o2 and the individual effect o is assumed to come from
a non-negative truncated normal distribution with zero mean and variance o2. Since we impose
non-negativity on «;, the cost equation (6.1) is equivalent to a stochastic cost frontier where the

firm effect , is interpreted as an inefficiency term.* We will denote this estimator by MLE1 in

*Note that CIM4 does not restrict the distribution of the error term to be symmetric and “bell-shaped”.

*For estimation purposes the model above is parameterised in terms of o2 and 7, where 02 = o2 + 02
is the overall variance and 7 = 02 /o2 is a useful indicator of the relative importance of both noise and
inefficiency variances.
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order to distinguish it from a different MLE estimator, which we will consider later.

The WITHIN estimator can be viewed as a restricted version of the GMMI1, in that if individ-
ual effects are time-invariant, the consistency of both estimators relies exclusively on the moment
conditions implied by the orthogonality assumptions. The MLE results rely on stronger assump-
tions. In particular, MLE makes the “random effects” assumptions that «; is independent of the
regressors. Moreover, the individual effects «; in the MLE model are also restricted to be i.i.d.
half-normal (i.e. to be positive) and ¢;; to be i.i.d. normal. None of the other estimators uses
these assumptions, except that GMM3, GMM4, GMMS and CLS assume white noise, and GMM5
assumes normality.

The model above (6.1) can also be interpreted as a cost frontier in the GMM and CLS frame-
works if the time-varying individual effects «;; are decomposed into a frontier intercept which

varies over time (a;) and a non-negative inefficiency term (v;;). That is:
Oy = )\t(H)aZ = Oy -+ Vit (62)
Following Cornwell, Schmidt and Sickles (1990) the frontier intercept can be estimated as:

&y = min(&;;) = Ay(6) - min(éy) (6.3)

2

and the inefficiency term as:
Bie = \e(0)[@ — min(&)] = M (0)d; (6.4)

Since the dependent variable is expressed in natural logs, cost efficiency indexes can be calculated
from (6.4) as:

CEy = exp (- A(0)[6; — min(d)]) (6.5)

As customary, the efficiency indexes in the WITHIN model can be obtained using the expression

(6.5) once § = 0 or A\;(#) = 1 is imposed. (See Schmidt and Sickles, 1984.)
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It is easy to see from expressions (6.4) and (6.5) that cost efficiency compares the performance
(individual effect) of a particular firm with a firm located on the frontier (i.e. with the minimum
effect). Since cost efficiency is a relative concept, the average efficiency index is thus related to
the estimated variance o2: the higher the variance of the individual effects, the smaller the average
efficiency.

Note, however, that adjusting the GMM specification to be a frontier yields a model with
a frontier intercept that varies over time (i.e. with technical change) which does not appear in
MLEI. For this reason, we also estimate a MLE estimator with a time-varying intercept which
we will denote MLE2. In this model, the time-varying parametric function A, appears twice:
first, multiplying a non-negative individual effect (v;) which is assumed to be distributed as a
half-normal, and second, multiplying a constant that is the minimum alpha value obtained using

GMMS5.? That is:

In Cyy = In C* (git, wir, v, B) + Ae(0) [miin(dz-) + v + e, v >0. (6.6)

6.2 Data

The application uses yearly data from Spanish saving and private banks. The number of banks
decreased over the last ten years due to mergers and acquisitions. These mergers took place espe-
cially among saving banks and mainly in the early 1990s. In order to work with a balanced panel
data, we use data from 38 private banks and 50 savings banks over the period 1992-98.

The estimations were carried out separately for savings and private banks since they are in-
volved in quite different activities. Savings banks concentrate on retail banking, providing check-
ing, savings and loans service to individuals (especially mortgage loans), whereas private banks

are more involved in commercial and industrial loans. Another difference is the fact that savings

SWe have selected this estimator because it is the nearest to MLE and more efficient than CLS.
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banks are more specialized than other banks in long-term loans, which do not require a continu-
ous monitoring. Since the two groups are likely to have different cost structures and have been
regulated in different ways, we analyse the two groups separately rather than pool them.

The variables used in the analysis are defined in the same way for both groups of banks. We
follow the majority of the literature and apply the intermediation approach proposed by Sealey and
Lindley (1977) which treats deposits as inputs and loans as outputs. We include three types of
outputs and three types of inputs. The outputs are: Loans to banks and other profitable assets (q1);
Loans to firms and households (g2); and noninterest income (g3). Using noninterest income goes
beyond the intermediation approach as commonly modeled. We include it in an attempt to cap-
ture off-balance-sheet activities such as securitization, brokerage services, management financial
assets for their customers or mutual funds, which are becoming increasingly important in Spanish
banks. This way of measuring nontraditional banking activities is not fully satisfactory (i.e. we
cannot distinguish between variations due to changes in volumes and variations due to changes
in prices, and noninterest income is partly generated from traditional activities such as fees from
service charges on deposits or credits rather than nontraditional activities). Since comprehensive
information about the amount of off-balance-sheet services is not available, we prefer to describe
them in an approximate way.

The inputs are: Borrowed money, including demand, time and saving deposits, deposits from
non-banks, securities sold under agreements to repurchase, and other borrowed money (', ); Labor,
measured by total number of employees (z2); and Physical Capital, measured by the value of
fixed assets in the balance sheet (z3). All the input prices, w; (z = 1,2, 3), were calculated in
a straightforward way by dividing nominal expenses by input quantities. Accordingly, total cost

includes both interest and operating expenses.
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6.3 Empirical results

The parameter estimates of the cost frontiers for savings banks and private banks are presented in
Table 1 and Table 2 respectively.® Since the variables have been normalized by dividing by the
sample geometric mean, the first order coefficients can be interpreted as the elasticities evaluated
at that point. The standard homogeneity of degree one in input prices is imposed by normalizing
cost and input prices using the price of physical capital as a numeraire.

Since all elasticities are positive at the geometric mean, the estimated cost frontiers are in-
creasing at this point in their variables. These results confirm (positive) monotonicity of both cost
frontiers. Returns to scale can be estimated as one minus the scale elasticity (i.e. the sum of each
output cost elasticity). At the sample mean, the scale elasticity is only a function of the first-order
output parameters. Over the whole estimations, the sum of these parameters is smaller than one for
both savings and private banks. These results indicate the existence of increasing returns to scale
as found in many past analyses of Spanish banks.

Note that we can clearly distinguish two groups of estimators for private banks in terms of the
scale elasticity values. This value ranges from 0.756 to 0.860 using WITHIN and GMM up to
GMM4, whereas it rises over 0.925 using GMMS5 and MLE estimators. The scale elasticity values
for the savings banks are more homogeneous. However, they tend to increase as we go from
GMM1 to MLE. In particular, the scale elasticity is less than 0.857 using the WITHIN, GMM 1
and GMM3 estimators, whereas it is over 0.90 using other estimators.

The estimated parameters in cost frontier (6.1) can be used to calculate individual indexes of
cost efficiency. These indexes are obtained using expression (6.5), except for the MLE estimator
where we follow Battese and Coelli (1992). This paper allows the computation of estimates of the

individual technical inefficiencies from the estimation of a production function. Here, that model

®The @ estimates are reported in Table 3 and Table 4 due to they are mainly related with the results
regarding the efficiency indices.
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is modified to adjust for estimation of cost efficiency.

Tables 3 and 4 report some results for cost efficiency for private and savings banks respec-
tively. These tables also provide the estimated 6 value, which allows us to assess variations in cost
efficiency over time.” The cost efficiency indexes increase or decrease over time on the basis of
the sign of the #’s. If this parameter is positive (negative), efficiency decreases (increases) and the
differences among firms increase (decrease) due to the exponential functional form of \;(f).

The private banks’ average efficiency using the WITHIN estimator is quite similar to that ob-
tained using GMMI1. This is reasonable because the consistency of both estimators relies on the
orthogonality assumption, and we cannot reject time-invariant efficiency using GMM1. The av-
erage efficiency from using GMM2 and GMM3 is slightly smaller, but again it is not possible
to reject the null hypothesis that # = 0. Time-invariant efficiency is also not rejected using the
GMM4 estimator, but now private banks’ average efficiency returns to the initial values found
using WITHIN and GMM1.

However, average and time-path efficiency change a lot when the error term is assumed to be
normal.® The efficiency level at ¢ = 1 using the GMMS5 estimator is 92% but it decreases strongly
over time. Unlike the previous estimators, this means that changes in efficiency over the whole
period are now statistically significant. The results from the CLS and MLE estimators, which also
assume €;; to be i.i.d. normal, are quite similar to GMMS5.’

A quick glance at the correlation coefficients in Table 3 seems to confirm the existence of a
breaking point at GMM4, giving rise to two subsets of estimators. This table shows that correla-

tions between efficiency indices from using estimators belonging their own group are rather high

"Except, obviously, for the WITHIN estimator where time-invariance is imposed on the individual ef-
fects.

$Using the GMM4 estimates, the skewness coefficient x3/02 and the degree of excess k4/0? take the
values —0.018 and 12.42 respectively. For normal distributions both measures must be zero. Hence, the
GMM4 estimates question the normal distribution assumption used in subsequent estimators.

Note that the estimated 1.k is quite similar to that found using GMMS5 or CLS once the MLE estimator
is adjusted in order to include a time-varying frontier intercept.
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(always over 90%). In contrast, correlations between any estimators belonging to opposite groups
range from 24% to 70%.

The same subset of estimators can be also appreciated in Figure 1 where all individual effi-
ciency indices are graphed according to bank size. Moreover, this figure shows a negative corre-
lation between efficiency and size.!? This correlation disappears when normality assumptions are
added.

On the other hand, an notable feature of Table 4 is that results for savings banks are, in general,
much more homogeneous than those found for private banks. For instance, the average efficiency
att = 11is over 80% and it seems to decrease over time. Whatever the model, the estimated 6 value

is positive and statistically different from zero.!!

Thus we can conclude that time-varying effi-
ciency models will provide more accurate estimates of savings banks’ efficiency than the standard

WITHIN model.

7 Conclusion

In this paper we have considered a panel data model with parametrically time-varying coefficients
on the individual effects. Following Ahn, Lee and Schmidt (2001), we have enumerated the mo-
ment conditions implied by alternative sets of assumptions on the model. We have shown explicitly
that our sets of moment conditions capture all of the useful information contained in our assump-
tions, so that the corresponding GMM estimators exploit these assumptions efficiently.

We have also considered concentrated least squares estimation. Here the incidental parameters

problem is relevant because we are treating the fixed effects as parameters to be estimated. An

10This negative correlation might indicate that big banks are involved in activities not accounted for by
the variables available.

'Note that we cannot reject that & = 0 using the MLEI estimator, which does not include a time-varying
frontier intercept (or technical change). Thus, the difference between Oyrr1 and Oy g2 can be used as an
indicator of the biases caused by omitting the effect of technical change on bank’s costs.
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interesting result is that the consistency of the least squares estimator requires both exogeneity
assumptions and the assumption that the errors are white noise. Furthermore, given the white
noise assumption, the least squares estimator is inefficient, because it fails to exploit all of the
moment conditions that are available.

We show how the GMM estimation problem can be simplified under some additional assump-
tions, including the assumption of no conditional heteroskedasticity and a stronger conditional
independence assumption. Under these assumptions we also give explicit expressions for the vari-
ance matrices of the GMM and least squares estimators.

Finally, we apply the proposed GMM estimations to the measurement of cost efficiency of
Spanish banks over the period 1992—-1998. The results seem to suggest, especially for private
banks, the non-fulfilment of the normality assumption on the error term. This questions the validity
of traditional MLE models, which are based on a normality assumption, when examining the

efficiency of Spanish banks.
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APPENDIX

In this Appendix we derive the asymptotic variances of the efficient GMM estimator and the CLS
estimator. We make the “conditional independence of the moments up to fourth order” (CIM4)

assumption of Section 4.

A The asymptotic variance of the GMM estimator

Under the Orthogonality and Covariance Assumptions, the moment conditions we have are b; =
G'u; @ Wi, by; = H'(G'u; ® u;), and by; = (MA) Nu; @ G'u;. Let 6 = (8,7,0')'. Let
B; = —E(0bj;;/09) for j = 1,2,3, evaluated at the true parameters. Let Vj;, = Eb;;b), for
J,k = 1,2, 3, evaluated at the true parameters. Define k3 = Ee},/0? and k4 = E(e}, — 30%) /02
Let uy = EW;; @ = ®(0) = AN, +diag(Ne, - .., A\r); and @, = A\ N, +diag()3, ..., \2), where

A = (Ag, ..., A7), After some algebra, we get

Vii = 02 (G'G ®@ Sww) (A.1)
Vig = 0?(G'G @ SN )H (A.2)
Vis = 07 [G'G @ Swa + N A(<I> ® pw)) (A.3)
Voo = 0?H'[G'G ® (020N + 02 Ir)|H (A.4)
2yt 2 02 !
V23=0'€H{|:(O'O[+E)GG+E :|®)\} (AS)
2
= o2 ! 2 o® + 59 A6
Vag = o {( A’A)GG+ Nxlad+ ()\’)\) } (A.6)
and
B1 = [(G ® Eww)ISX, (G ® EWW)ISZa A* ® EW&] (A7)
By = H'(It_; @ M) [(G ® Zwa)'Sx, (G ® Zwa)'Sz, 02A,] (A.8)
== [(G X ZWQ)ISX, (G X Ewa)ISZ, O'iA*]. (A9)
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With these results, the variance-covariance of the GMM estimator is
- 4 -1

Vii. Via Vig | [ Bs
covV'N(6 —6) = |(Bl, By, BY) |V, Vo Vis | | Bo : (A.10)

Vis Va3 Vaz | \ Bs

B The asymptotic variance of the CLS estimator

By the standard Taylor series expansion technique, we find that the asymptotic variance will be

equal to Ao By L Ay where

Ao = Bgeng and Bo= B o5

(B.1)
evaluated at the true parameter. Let us calculate each of them. Let A = 0A(0y)/00" = (0,x1, AL)".
By is the same as in Ahn, Lee and Schmidt (2001, p. 253). Let ¥ = G(G'G) '@ - (G'G) G,

U, = G(G'G)"19,(G'G)"'G"; and py = Fa;. Then

0C; 0C;
0C; OC;
E 9 oy 4025% (Pg ® Sww)Sz (B.3)
9C;0C; | 5
55 a5 = 1705k [PG ® Siwe + )\,)\(\I/ ® Mw)} A (B.4)
9C: 9C; ,
87 oy = = 4025, (Ps ® Sww)Sz (B.5)
9C;i0C; . o
B g = 4oiS, [PG ® Ty + X)\(\IJ ® uw)} A (B.6)
0C; OC; o2
B =402\ 2 <) Pg+2 oV + U, 5 A B.7
56 o0 O {(% * )\')\) o+ 25 5% + s ()\’)\) } B.7)
Ay is obtained from the following.
8201' ! ! !
9505 =2[S%(Pe ® Zww)Sx, Sx (P ® Zww)Sz, S%(Pg ® Ywa)A] (B.8)
820i ' ' '
v = 2[SZ(PG & EWW)SXa Sz(PG b2 Eww)Sz, Sz(PG ® Ewa)A] (B.9)
207,
5(? 0;;, = 2[A'(Pg ® Xiy,)Sx, N (Pe ® Xiy,)Sz, 02N PgAl. (B.10)
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Table 1. Estimated coefficients. Private Banks

WHITIN GMMI1 GMM?2 GMM3 GMM4 GMM5 CLS MLEI1 MLE2

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat
In ¢4 0.311 31.11 0.307 14.40 0.328 40.82 0.225 11.49 0.309 45.81 0.344 40.58 0.346 39.86 0.365 48.71 0.355 54.29
In go 0.412 27.85 0.421 14.69 0.420 1840 0.359 12.46 0.422 42.43 0.448 27.39 0.455 27.47 0.442 31.96 0.457 35.64
In g3 0.074 3.15 0.043 0.64 0.054 254 0.172 3.81 0.081 5.13 0.138 7.36 0.123 6.43 0.135 863 0.126 8.66
In wy 0.714 83.056 0.651 35.17 0.660 66.82 0.707 22.65 0.714 66.36 0.688 45.06 0.677 43.66 0.776 79.66 0.666 54.85
In wo 0.256 16.52 0.326 10.78 0.303 16.78 0.273 6.90 0.249 18.27 0.288 14.64 0.293 14.60 0.207 15.04 0.309 19.19
5(ng)? 0.190 13.33 0.165 5.85 0.165 13.35 0.203 7.35 0.186 19.39 0.179 12.14 0.184 12.28 0.168 12.53 0.169 13.63
5(lng2)?  0.046 1.07 0.107 0.97 0.200 3.81 —0.088 —1.04 —0.001 —0.05 0.192 3.74 0.117 2.26 0.082 1.83 0.120 2.82
5(lngz)?  0.134 243 0.160 1.61 0.131 255 0375 3.49 0.061 1.65 0.176 3.09 0.105 1.82 0.124 2.36 0.104 2.22
S(Inw;)?  0.150 4.12 —0.017 —0.33 0.062 1.70 —0.115 —1.56 0.094 3.71 0.111 2.97 0.093 2.44 0.145 4.29 0.100 3.21
S(nwy)? —0.051 —0.77 —0.283 —2.31 —0.052 —0.86 —0.417 —3.16 —0.199 —4.38 0.001  0.01 —0.031 —0.44 0.021 0.35 —0.018 —0.30
Ing; Ingy —0.063 —3.08 —0.038 —0.89 —0.114 —5.32 0.036 0.90 —0.064 —4.68 —0.080 —3.70 —0.085 —3.88 —0.078 —3.82 —0.083 —4.85
Ing; Ings —0.122 —5.20 —0.092 —2.05 —0.026 —1.19 —0.199 —4.32 —0.111 —6.99 —0.074 —2.96 —0.065 —2.55 —0.078 —3.47 —0.059 —3.12
Ing; Inw; 0.054 4.18 0.075 3.43 0.065 532 0.049 1.82 0.066 7.28 0.084 6.51 0.095 7.28 0.074 597 0.090 8.46
Ing; Inwy —0.049 —2.28 —0.148 —3.78 —0.103 —5.74 —0.147 —3.42 —0.083 —5.57 —0.094 —4.46 —0.113 —-5.29 —0.080 —4.09 —0.106 —5.93
Ings Ings  0.009 0.21 —0.089 —1.04 —0.087 —1.97 —0.048 —0.61 0.068 2.51 —0.109 —2.34 —0.040 —0.86 —0.019 —-0.47 —0.043 -1.12
Ings Inw; —0.004 —0.17 —0.097 —2.17 0.018 0.66 —0.149 —2.99 0.010 0.59 0.000 —0.01 —0.026 —0.97 —0.016 —0.70 —0.024 —1.02
Ings Inwy 0.087 2.18 0.243 3.11 0.025 0.61 0.255 3.28 0.056 2.10 0.043 096 0.070 1.56 0.076 2.04 0.073 1.93
Ingz Inw; —0.038 —1.55 0.004 0.10 —0.071 —2.64 0.099 2.09 —0.063 —3.77 —0.054 —2.04 —0.045 —1.70 —0.037 —1.60 —0.053 —2.45
Ingz Inwy —0.015 —0.32 —0.048 —0.66 0.102 2.27 —0.029 —0.33 0.052 1.72 0.043 0.88 0.043 0.86 0.017 0.40 0.045 1.09
lnw; lnwe —0.047 —1.16 0.118 2.04 0.006 0.14 0.245 2.97 0.040 142 —0.038 —0.87 —0.015 —0.33 —0.074 —1.94 —0.025 —0.67
Intercept 8.769 11.14 9.417 38.55 10473 4.69 9.758 33.86 9.825 546.00 9.834 506.44 9.687 772.09 9.856 701.07

o2 0.5812 0.0317 0.0037 0.0046 0.0054 0.0059

o? 0.0042 0.0005 0.0011 0.0011 0.0011 0.0008

Ob;. Func. 21.445 18.832 26.513 10.077 0.0045 464.69 502.97
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Table 2. Estimated coefficients. Saving Banks

WHITIN GMM1 GMM?2 GMM3 GMM4 GMM5 CLS MLEI1 MLE2

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat
In ¢4 0.284 22.60 0.314 1245 0.326 27.06 0.302 15.61 0.320 39.49 0.321 41.32 0.309 44.21 0.316 28.76 0.304 32.16
In go 0.491 2445 0.423 9.87 0.540 22.36 0.430 12.70 0.548 43.59 0.550 45.19 0.543 47.01 0.592 27.79 0.591 36.04
In g3 0.036 2.74 0.120 4.38 0.068 3.71 0.109 5.04 0.062 6.29 0.066 598 0.057 7.00 0.032 2.39 0.045 3.87
In wyq 0.694 61.27 0.634 48.82 0.668 62.82 0.634 32.46 0.685 76.05 0.680 80.58 0.678 91.77 0.754 73.84 0.686 64.8
In ws 0.292 21.10 0.328 13.99 0.270 20.02 0.332 14.62 0.299 28.62 0.305 30.90 0.305 35.58 0.245 18.57 0.301 24.70
5(ng )% 0.165 6.79 0.191 2.81 0.208 9.68 0.184 4.89 0.183 10.61 0.176 10.74 0.177 12.38 0.181 7.42 0.176 8.10
S5(lng2)?  0.136 2.29 0.029 0.22 0.187 2.89 0.016 0.18 0.103 249 0.106 2.70 0.102 2.98 0.122 2.34 0.065 1.27
S5(lngz)?  0.021 0.47 —0.009 —0.09 —0.062 —1.29 —0.055 —0.77 0.041 1.27 0.023 0.73 0.000 0.01 0.052 1.56 0.014 0.36
S(nw;)? 0108 4.48 0.140 3.86 0.133 4.19 0.134 346 0.179 9.97 0.150 8.79 0.141 9.63 0.140 5.80 0.147 6.69
S(nwy)?  0.055 1.16 0218 240 0.142 295 0211 282 0.082 238 0053 1.62 0.065 228 0.053 1.15 0.028 0.67
Ing; Ingy —0.119 —4.22 —0.121 -1.72 —0.224 —-8.05 —0.132 —-3.03 —-0.107 —-5.31 —0.118 —-6.15 —0.126 —7.61 —0.101 —3.41 —0.101 -3.97
Ing; Ings —0.039 —1.72 —0.061 —-1.68 0.017 0.79 —0.044 —1.30 —0.083 —5.53 —0.060 —4.12 —0.054 —4.22 —0.079 —-3.44 —-0.079 —-4.14
Ings Inw; 0.075 4.36 0.017 040 0.061 295 0.023 082 0.036 2.63 0.038 2.88 0.060 4.65 0.061 3.51 0.048 2.86
Ing; Inwy —0.062 —2.44 0.028 0.44 —0.033 —1.24 0.021 0.52 0.030 1.63 0.021 1.20 —0.004 —0.24 —0.046 —1.82 —0.010 —0.45
Ings Ings —0.003 —0.06 0.043 0.48 0.030 0.63 0.070 0.98 0.011 0.34 0.006 0.18 0.017 0.63 —0.004 —0.10 0.038 0.98
Ings Inw; —0.130 —5.08 —0.035 —0.79 —0.031 —1.03 —0.041 —0.95 —0.056 —2.73 —0.067 —3.41 —0.086 —5.23 —0.142 —5.70 —0.095 —3.85
Ings Inwy 0.068 1.77 —0.120 —1.97 —0.039 —0.93 —0.122 —1.96 —0.015 —0.51 0.006 0.20 0.036 1.52 0.082 2.36 0.063 1.99
Ings Inw; 0.060 2.63 0.017 0.36 —0.014 —-0.56 0.019 0.52 0.039 2.19 0.047 275 0.046 3.24 0.082 3.69 0.061 2.70
Ings Inw, 0.005 0.15 0.065 1.18 0.045 1.21 0.070 1.29 —0.003 —0.12 —0.012 —0.52 —0.013 —-0.63 —0.016 —0.53 —0.026 —0.89
Inw; Inwy —0.064 —2.45 —0.125 —2.66 —0.137 —3.90 —0.120 —2.74 —0.155 —7.65 —0.123 —6.34 —0.116 —6.96 —0.103 —3.96 —0.122 —4.99
Intercept 9.968 130.84 9.780 187.90 9.962 96.60 9.745 544.57 9.759 528.06 9.814 391.43 9.504 661.83 9.779 835.35

o2 0.0888 0.0102 0.0116 0.0253 0.0195 0.0112

o? 0.0016 0.0003 0.0003 0.0002 0.0007 0.0006

Ob;. Func. 28.526 27.694 39.247 12.231 0.0032 668.06 706.08
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Table 3. Estimated efficiency levels. Private Banks

) Average Efficiency Spearman Rank Correlation Coefficient
Estimator < =7 WITHIN GMMI GMM2 GMM3 GMM4 GMM5 CLS MLEl MLE2
WITHIN 70.4 704 70.4 100
GMM1 713 719 72,6 —0.010 99.8 100
GMM2 653 67.7 69.9 —0.030 98.4 98.2 100
GMM3 60.0 59.6 59.1  0.005 95.5 95.4 93.6 100
GMM4 70.8 704 70.0  0.006 99.8 99.6 98.4 95.4 100
GMMS 919 86.7 78.7  0.177«  58.8 58.4 58.5 50.6 60.6 100
CLS 91.9 871 79.9 0.166x 61.8 60.6 60.5 52.7 62.8 96.6 100
MLEI 946 929 90.6 0.099«  33.0 34.2 34.3 24.0 36.7 90.7 89.0 100
MLE2 93.8 90.5 85.5 0.152«  39.9 38.4 38.6 28.8 40.9 93.8 952 949 100

Note: * indicates that we can reject the null hypothesis Hy : # = 0 at 1% level.
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Table 4. Estimated efficiency levels. Saving Banks

) Average Efficiency Spearman Rank Correlation Coefficient
Estimator < =7 WITHIN GMMI GMM2 GMM3 GMM4 GMM5 CLS MLEI MLE2
WITHIN 57.3 57.3 57.3 100
GMMI1 825 804 78.0 0.045%  86.2 100
GMM2 86.6 81.5 74.8 0.120x  81.3 92.4 100
GMM3 825 80.5 783 0.042x 904 98.9 91.8 100
GMM4 89.8 86.7 82.7 0.098%«  T1.1 89.8 94.8 86.9 100
GMMS 89.3 86.2 824 0.092«  70.9 90.1 94.4 87.4 99.7 100
CLS 88.4 86.2 83.7 0.063x  80.5 95.0 96.6 93.6 97.7 97.9 100
MLEI  89.0 89.0 89.0 0.001 75.1 84.0 92.8 83.2 94.7 942 943 100
MLE2 91.5 89.2 86.5 0.083x  68.6 85.4 93.4 83.6 97.9 98.6 96.1 96.2 100

Note: * indicates that we can reject the null hypothesis Hy : # = 0 at 1% level.
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Figure 1. Efficiency indices at first period. Private Banks
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