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Abstract 

  

Land fragmentation affects dairy farming through its influence on foodstuff production. 
As such, its impact is expected to be larger on extensive farms (which use a large land 
area per cow) than on intensive ones. Given this, land fragmentation could also 
constitute an obstacle to adopt extensive production technology. As direct payments of 
the Common Agricultural Policy to protect the environment and preserve rural heritage 
concern extensive farming, land fragmentation can reduce the effectiveness of this rural 
development aid. We propose using a stochastic frontier latent class model approach to 
evaluate this double effect of land fragmentation, namely its different impact on 
extensive and intensive farms’ productivity and its influence on the technology choice. 
The model is estimated using a sample of Spanish dairy farms located in a region where 
land is highly fragmented. Based on the results obtained, a simulation analysis is carried 
out to evaluate the impact of land consolidation processes on both the technology choice 
and farms’ productivity. 
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1. Introduction 
 

Land fragmentation, in which a single farm uses several parcels of land, is a 
common feature in many countries (Blarel et al., 1992; Wan and Cheng, 2001; van Dijk, 
2003). This characteristic is usually expected to have a negative effect on farms’ 
productivity due to several reasons: 1) fragmentation causes an increase in traveling 
time between fields which induces both lower labor productivity and higher transport 
costs for inputs and outputs; 2) it reduces the efficiency of machines in relation to that 
obtainable in large, rectangular fields (Buller and Bruning, 1979); 3) land is lost when 
forming plot boundaries and access routes; and 4) the need for additional machinery, 
secondary buildings or external service expenses. Therefore, land consolidation 
processes have been developed around the world to avoid the negative impact of land 
fragmentation on agricultural productivity (Vitikainen, 2004; Pasakarnis and Maliene, 
2010; Niroula and Thapa, 2005). 

On the other hand, land fragmentation (LF hereafter) is also expected to have 
some positive aspects for farmers. For instance, farmers could take advantage of 
differences in both elevation and soil type as crops at lower elevations mature before 
than those at higher elevations, and plots with different soil types permit a farmer to 
produce a more diversified portfolio of crops. Differences in elevation and soil type 
would thus allow the synchronization of harvests with available family labor, thereby 
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reducing requirements for hired labor. Additionally, LF is expected to reduce 
production risk associated with the influence of hailstorms, floods or fire. 

The empirical literature measuring the effect of LF on agricultural production is 
quite limited, though it is evolving.1 While most papers examine this issue by including 
an LF measure as an additional input in the farm’s production function (Wan and 
Cheng, 2001; Wu et al., 2005), Wadud and White (2000), Rahman and Rahman (2008) 
and other studies use the Stochastic Frontier Approach (SFA) to analyze its effect on 
farms’ productivity (i.e. efficiency).2 Most empirical studies conclude that 
fragmentation negatively affects agricultural productivity (Wan and Cheng, 2001; 
Rahman and Rahman, 2008) but, in some cases, LF shows a non-significant effect on 
agricultural production (Wu et al., 2005). Therefore, it seems that the effect of LF could 
depend on the characteristics of the production process analyzed. 

Focusing on milk production, Corral et al. (2011) found a negative impact of LF 
on farms’ productivity and profitability, which suggests that LF generates some 
difficulties for foodstuff production inside the farm. In this study we try to extend the 
empirical study carried out by Corral et al. (2011) and test two additional, but related, 
hypotheses. First, we analyze whether the effect of LF is larger in extensive farms, 
which use a large proportion of own-produced feed,3 than in farms using a large 
proportion of purchased foodstuff, usually known as intensive farms (Alvarez and 
Corral, 2010; Alvarez et al., 2008). Second, as LF is expected to be more relevant for 
extensive farms, and the choice of production processes is not external to dairy farmers 
(i.e. it is an endogenous decision), we also examine whether LF has conditioned the 
current choice of production process. In particular, our approach allows us to examine 
whether farms tend to select more (less) extensive methods as the degree of LF 
increases.  

Both farmers and policy makers are likely to find the empirical results of this 
paper interesting. Regarding farmers, the degree of market competition is expected to 
increase due to the disappearance of milk quotas in 2015, and the probable reduction in 
milk prices could compromise the economic viability of dairy farms. Therefore 
improving farms’ technical efficiency could be necessary to permit the farms to survive. 
Additionally, intensive dairy production is profitable when a large production per cow 
compensates the large expenses on (purchased) concentrates. This often occurs when 
the ratio between the price of milk and the price of concentrates is high. However, given 
that feeding costs (most of which are concentrate purchases) represent 80% of variable 
costs, farms will likely be forced to adopt more extensive systems of milk production in 
order to use more self-produced foodstuff if the milk price falls. The struggle for 
survival will thus likely rely on improving farms’ technical efficiency and adopting 
extensive production processes, and both may depend on the degree of LF. 

                                                           
1
 Exceptions are Di Falco et al. (2010), Del Corral et al. (2011), and Latruffe and Piet (2013) in Europe; 

Nguyen et al. (1996), Wang and Cheng (2001), Carter and Estrin (2001), Tan et al. (2010) for China; and 
Parikh and Shah (1994), Jabarin and Epplin (1994), Wadud and white (2000), Rahman and Rahman 
(2008), Kawasaki (2010), Manjunatha et al. (2013) for other (Asian) countries. 
2
 Technical efficiency is measured in this literature as the ratio between the actual production and the one 

attained by fully exploiting the technological potential. 
3
 Extensive farms are usually characterized by high values of land per cow ratio and low values of 

concentrates per cow ratio. 
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On the other hand, as extensive production processes generate lower ground and 
water pollution (Haas et al., 2001; Basset-Mens et al., 2009), the Common Agricultural 
Policy includes actions to incentivize its adoption by dairy farmers (Council Regulation 
No 74/2009). In this sense, our results on the choice of intensive or extensive 
production processes contribute to our understanding of whether LF is indeed an 
obstacle to adopting less polluting production processes. 

To carry out our analysis we propose using a latent class stochastic production 
frontier model. The model is estimated using a sample of Spanish dairy farms located in 
Asturias, a region located in the northwest of Spain where land is highly fragmented.4 
Our empirical strategy allows both the identification of the technological differences 
between intensive and extensive dairy farms as well as the measurement of the impact 
of LF on the choice of a milk production system. In addition, the frontier nature of the 
milk production function allows an assessment of the impact of LF on the technical 
efficiency of intensive and intensive farms. Finally, several simulation exercises are also 
performed to analyze the effects of a potential reduction in the number of plots due to a 
hypothetical land concentration process.  

 

2. Empirical model  

In contrast to the common practice of estimating a single production function for 
all farmers regardless of whether they are actually using extensive or intensive systems 
of milk production, we will assume that the technologies of these two groups of farms 
may be different. However, the use of one technology or another is not directly 
observed by the researcher. At most, only partial technological indicators, such as the 
ratios of concentrates per cow or land area per cow, are available.   

Most papers have used a two-stage procedure to deal with the issue of 
production heterogeneity. In the first step, the sample is split into a number of mutually 
exclusive groups (classes) based on some a priori information about farms, and in the 
second stage different functions are estimated for each class/sub-sample separately (e.g. 
Hoch, 1962; Newman and Matthews, 2006; Kumbhakar et al., 2009). As this 
(clustering) approach allows the estimation of different technological characteristics for 
farms belonging to different groups, this is the most common approach followed in the 
literature to address the issue of farm production heterogeneity. However, if the a priori 
classification is not precise it will generate some errors in the first (allocation) stage of 
the procedure, which might also bias the technological parameter estimates of the 
second stage. In addition, Orea and Kumbhakar (2004) pointed out that two-stage 
procedures are not efficient because they do not use the information contained in one 
class to estimate the technology of other classes. This inter-class information may be 
quite important in our empirical application because farms belonging to different classes 
share some common features, although their technologies may be different.  

To account for farm production heterogeneity, we advocate using a latent class 
model (hereafter LCM) that combines the stochastic frontier approach with a latent 
class structure. An LCM, also known as a finite mixture model, assumes that there is a 
                                                           
4
 The Agrarian Census conducted in 1999 (Agrarian Censuses are performed every ten years and the last 

one including the number of plots per farm is that from 1999) shows that the average number of plots per 
farm in Asturias is 12.5 (INE, 2014a). 
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finite number of structures (classes) underlying the data. These models classify the 
sample into several groups and each farm can be assigned to a particular group using the 
estimated probabilities of class membership.5 Like other clustering methods, the LCM 
can be viewed as a clustering procedure that separates the sample and estimates the 
technology for each group, but in only one stage. Hence, in the absence of a precise 
prior classification of farms, the LCM clusters the farms by searching for differences in 
the production technology, which is exactly what we are looking for. Additionally, as 
both clustering and parameter estimation are carried out simultaneously, it does not 
ignore the above-mentioned inter-class information. 

In this paper, we use an LCM to estimate the technology of dairy farms 
according to their degree of intensification. Since we are interested in the efficiency of 
each group, the latent class model is applied in a stochastic frontier framework. The 
general specification of a stochastic frontier LCM production function can be written as 
follows: 

ln �� = �(��, 
�) + ��|� − ��|� 
     (1) 

where i stands for farms and j = 1,…, J for class. The t subscript is dropped from all 
variables for notational ease. yi is a measure of firms’ output, xi is a vector of 
explanatory variables, ��|� is  a noise term that follows a normal distribution with zero 
mean and class-specific constant variance, and ��|� is a class-specific one-sided error 
term capturing farms’ inefficiency.6 In an LCM setting, the number of classes J should 
be chosen in advance by the researcher. In our application we assume that there are two 
classes corresponding to extensive and intensive systems of milk production, i.e. J=2. 
As the set of parameters βj is j-specific, the technological characteristics vary across 
classes. It is worth noting that only between-group and not individual heterogeneity is 
controlled using a LCM because all farms belonging to a particular group share the 
same technology. 7 

Letting θj denote all parameters associated with class j, the conditional 
likelihood function of a firm i belonging to class j is LFij(θj). The unconditional 
likelihood for firm i is then obtained as the weighted sum of their j-class likelihood 
functions, where the weights are the probabilities of class membership, Pij. That is: 

���(�, �) = � ����  ������������
��� ,          0 ≤ ������� ≤ 1,          � ���(��)�

��� = 1 

                                                           
5
 Finite mixture models have been broadly used in several fields of research (see Beard et al., 1991; or 

Gropper et al., 1999, for simple applications; and Battese et al., 2004; or O'Donnell et al., 2008, for more 
comprehensive applications that aim to examine technological gaps using a metafrontier approach). 
6 Later on we assume that the variance of the inefficiency term varies across farms, and hence our 
stochastic frontier model can be viewed as a heteroscedastic model using the terminology coined by 
Kumbhakar and Lovell (2000). 
7 Several non-clustering methods have been also proposed to deal with unobserved heterogeneity across 
firms. Of particular interest are the panel data estimators recently introduced by Greene (2005), where 
unobserved heterogeneity is captured through a set of firm-specific intercepts that are to be estimated 
simultaneously with other parameters. However, this approach imposes common slopes for all farms, so 
all of them would share the same technological characteristics such as output elasticities and economies 
of scale. 
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   (2) 

where, θ=(��,…, ��), δ=(��,…, ��) and the class probabilities are parameterized as a 
multinomial logit model: 

������� =  exp( ��$%�)∑ exp(��$%�)���� ,          ' = 1, … , ),          �� = 0 

  (3) 

where qi is a vector of farm-specific variables. Therefore, the overall likelihood function 
resulting from (2) and (3) is a continuous function of the vectors of parameters θ and δ, 
and can be written as: 

*+ �� (�, �) = � *+ ���  (�, �),
��� =  � *+ -� ����

�
��� �������  (��).,

���  

 (4) 

Maximizing the above likelihood function gives asymptotically efficient 
estimates of all parameters. It should be pointed out that in this framework each farm 
belongs to one and only one class. Therefore, the probabilities of class membership just 
reflect the uncertainty that researchers or regulators have about the true partition of the 
sample. The estimated parameters can be used to compute posterior class membership 
probabilities using the following expression:  

�('|/) =  
������0�����  (�1�)

∑ ����
�
��� ��0�����  (�1�)

 

     (5) 

These posterior probabilities of membership can be then used to allocate each 
farm to a particular class, e.g. each farm could be allocated to the class with the higher 
posterior probability. It is worth noting that posterior probabilities can vary over time 
and therefore farms are allowed to switch between the extensive and intensive regimes.  

 

3. Data 

The empirical application is based on data proceeding from dairy farms located 
in the region of Asturias in northwest Spain. The agricultural sector in Asturias is 
specialized in milk production, which accounted for 52% of agricultural production in 
2011 (SADEI, 2011). Asturias and the North of Spain in general are characterized by a 
high degree of LF. As policy makers are worried about the effect of LF on agricultural 
production, some land consolidation mechanisms have been implemented in the region 
over several decades. In particular, land consolidation processes affected 7,545 farms 
during the 2001-2010 period. Specifically, 17,395 hectares divided into 59,284 plots 
were concentrated into 15,720 plots over this period (SADEI, 2011). 

The data used in the empirical analysis consist of an unbalanced panel of 144 
Spanish dairy farms that were enrolled in a voluntary record-keeping program that was 
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conducted by the regional government over a 13-year period from 1999 to 2011. This 
record-keeping program collects information about nine Dairy Farmers Management 
Associations located in Asturias. These associations are funded by the regional 
government and their main objective is to provide managerial advisory services to its 
associated farmers. To collect the data necessary for the advisory service, each farm is 
visited monthly by a technician. The monthly information is combined with annual 
inventories to carry out an annual report on each farm.  

Furthermore, in 2008 a survey was conducted among the farmers affiliated with 
the Dairy Farmers Management Associations to determine the number of plots that each 
farm had in 2007. Our analysis was carried out assuming that the number of plots does 
not change if the number of hectares remains constant. That is, if for some farm the 
number of hectares in 2004 (2009) is different from that in 2007, then its observations 
corresponding to 2004 and previous years (2009 and following years) are excluded from 
the data. This explains why the number of observations reaches its maximum around 
2007. This selection process leads to an unbalanced panel that contains 1,524 
observations. 

The dependent variable is the production of milk (y) and is measured in liters. 
Five inputs are considered: Labor (x1) includes family labor and hired labor and is 
measured using Social Security expenses; Cows (x2) is defined as the number of adult 
cows in the herd; Feed purchases (x3) includes expenses on concentrates and forage 
purchases; Forage production expenses (x4) are defined as the costs of seeds, fertilizers, 
machinery, fuel and land; and Animal expenses (x5) are defined as livestock supplies, 
breeding and veterinary expenses. To take into account possible technological 
differences we include the dummy variable Coast which is equal to 1 for farms located 
in a coastal county. Time dummy variables were introduced to control for common 
factors that affect all farms and that vary over time, such as weather conditions and 
technical change (1999 is the base year). All the above monetary variables are 
expressed in 2011 Euro. 

We have included five variables as efficiency determinants: Plots (z1) is the (log) 
number of plots and is used as an LF measure; Family labor (z2) is defined as the ratio 
of family labor to total labor; Own land (z3) is the ratio of owned land to total land; 
Housing (z4) is defined as a dummy variable equal to 1 for farms that use freestall 
housing (Cabrera et al., 2010); and Milking (z5) is a dummy variable that takes the value 
1 if the farm uses a milking parlor (Cabrera et al., 2010). Regarding the sample 
separating variables, we have included the ratio Concentrates/cows (q1) to anchor our 
two classes to differences in milk production systems; Land (q2) is the logarithm of 
farm land measured in hectares and the logarithm of the number of plots (q3).

8,9 

Table 1 provides a descriptive summary of the variables used in this study. The 
dairy farms in the sample are highly specialized with more than 80% of farm income 
coming from dairy sales. The average farm size in the sample is larger than the average 

                                                           
8
 LF can be measured in several ways; including the Simpson index (Simpson, 1949; used by Blarel et al., 

1992 and Wu et al., 2005; among others), the Januszewski index (Januszewski, 1968; used by Austin et 
al., 2012); the average plot size (Nguyen et al., 1996; Wadud and White, 2000) and the number of plots 
(Wan and Cheng, 2001; Falco et al., 2010). The use of the Simpson or the Januszewski indexes is not 
possible given that the data does not contain information about the plots’ surface (only the farm land 
surface and number of plots is available). Thus, in this study LF was measured using the number of plots. 
9 Note that q3 is the same variable as z1. 
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Spanish farm (31 cows in 2010; Eurostat, 2014) but quite similar to the average farm 
size in some of the main milk producing countries in Europe such as France or Germany 
(46 cows; Eurostat, 2014). Differences among farms are quite important as the standard 
deviation of milk production is 69% of mean production. Finally, it is worth noting that 
land is highly fragmented since the average number of plots per farm is approximately 
thirteen. 

INSERT TABLE 1 

4. Results 

We assume that the frontier production function in (1) is a Translog function 
where, as is customary, the explanatory variables have been divided by their geometric 
mean. In particular, the model to be estimated is: 

ln � = 
2 + � 
3|�
4

3�� ln �3 + 12 � � 
36|�
4

6�� ln �3 ln �6
4

3�� + 
7|�89:;< + � 
=|�
>2��

=�>222 ?=
+ �|� − �|� 

         (6) 

where the β’s are parameters to be estimated, and the first-order coefficients can be 
interpreted as output elasticities for a farm characterized by an input endowment equal 
to the sample geometric mean. The stochastic part of the model is decomposed into a 
noise term, v, and an inefficiency term, u. While v is assumed to be normally 
distributed, the inefficiency term is assumed to follow a half-normal distribution.  

Unlike most papers which have estimated LCM stochastic frontier models, we 
assume that the variance of the inefficiency term is heteroscedastic and varies across 
farms. In particular, we model the standard deviation of u as a function of the technical 
efficiency determinants mentioned in Section 3, that is: 

ln @A|� = B2|� + B�|�C� + B>|�C> + BD|�CD + BE|�CE + B4|�C4 
  (7) 

Regarding the prior class probabilities, the probability of belonging to the 
extensive group (hereafter P(δ)) is parameterized as follows: 

�(�) =  exp( �2 + ��%� + �>%> + �D%D)1 + exp( �2 + ��%� + �>%> + �D%D) 

    (8) 

The estimation was carried out using the econometric package GAUSS. The 
parameter estimates of P(δ) are shown in Table 2. The coefficients of the three variables 
are significant and show the expected sign. Thus, large values of the concentrates/cow 
ratio (q1) characterize intensive farms and, therefore, diminish the probability of 
belonging to the extensive group. The probability of being an extensive farm increases 
with farm land (q2), an expected result because extensive farms need land for foodstuff 
production. The more important result for this study is that the number of plots (q3) 
diminishes the probability of using an extensive technology, as would be expected. This 
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outcome seems to indicate that LF has been an important obstacle to adopting extensive 
production processes in our sample.  

INSERT TABLE 2 

Based on the estimated prior class probabilities, posterior probabilities of 
belonging to either the extensive or intensive groups were computed using equation (5). 
While 823 observations were classified as extensive, 701 observations were considered 
as intensive. It is worth noting that the classification of each observation was quite clear 
in general as the average posterior probability of being extensive (intensive) of those 
observations classified in the extensive (intensive) group was very high, 87.2% (84.5%).  

Table 3 provides the average value of the variables included in the empirical 
analysis for each group. In addition to the fact that intensive farms are slightly larger 
than extensive farms, other differences comply with the expected characteristics of both 
types of farms. For example, while intensive farms use more concentrates per cow, 
extensive farms use a larger land area. The greatest difference by far has to do with the 
number of plots. The number of plots of intensive farms is almost double that of 
extensive farms, despite having a smaller average land area. The latter result seems to 
indicate again that the adoption of extensive systems of milk production has been 
conditioned by the degree of LF.  

INSERT TABLE 3 

Tables 4 and 5 provide the estimated production frontier parameters for 
extensive and intensive farms respectively. In general, notable differences in estimated 
parameters are found between the types of farms. For instance, the first-order 
coefficient of Labor (x1) is not statistically significant for extensive farms. 10 The lack of 
significance of labor is not unusual in studies analyzing family farms with very little 
hired labor (see, for example, Ahmad and Bravo-Ureta, 1995; Cuesta, 2000; Roibas and 
Alvarez, 2012). This is the case in our application where hired labor represents only 5% 
of total labor on extensive farms. Interesting enough, the proportion of hired labor in 
intensive farms is almost double and the labor elasticity is highly significant in this 
technology. The elasticity with respect to cows (x2) for intensive farms is quite larger 
than that for extensive farms, an expected result given that the production per cow is 
higher for intensive farms. While the elasticity of feed purchases (x3) is larger for 
extensive farms, most likely due to the diminishing returns to the use of concentrates, 
the elasticities of forage production expenses (x4) and animal expenses (x5) are 
relatively low, though slightly larger in both cases for the extensive technology. We also 
find significant differences in productivity in favor of coastal farms for the intensive 
technology, whereas no difference was found for extensive farms. Time dummy 
variables show rather similar values for both technologies. The parameter estimates 
indicate that the productivity in 2011 was 18% larger than in 1999. This result suggests 
that some technological change took place over the sample period due to genetic 

                                                           
10

 Differences in the first-order parameters must be interpreted with caution because these parameters are 
related to the input elasticities of the sample average farm using both technologies, and the sample 
average farm does not correspond with either the average intensive farm or the average extensive farm. 
When the output elasticities in each group are calculated using the average observation belonging to the 
corresponding group, the computed elasticities are slightly closer than those obtained through the first 
order parameters. 
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progress,11 feeding technologies or cow comfort improvements. However, the time 
dummy parameters do not follow a monotonic path. The maximum productivity was 
achieved in 2006 for both technologies which suggests that other period characteristics 
like weather conditions also play a role in determining farm productivity. 

INSERT TABLE 4 

INSERT TABLE 5 

We have also calculated the elasticity of scale for both types of farms and tested 
whether they are significantly different from 1 using the Wald test. While the elasticity 
of scale takes a value of 1.002 for the extensive technology, it is equal to 1.144 for the 
intensive one. Whereas the Wald test does not reject the constant returns hypothesis for 
the extensive farms, it rejects this hypothesis for intensive farms.12 Therefore, the larger 
size of intensive farms is likely (or partially) caused by the existence of increasing 
returns to scale. 

 Tables 6 and 7 provide the parameter estimates of the determinants of farms’ 
inefficiency. We have also used the estimated coefficients of equation (7) to calculate 
the expected technical efficiency of each observation.13 As in Alvarez and Corral 
(2010), on average the technical efficiency of intensive farms was found to be slightly 
larger (92.2%) than that corresponding to extensive farms (90.2%). Moreover, notable 
differences between the technologies with regard to efficiency determinants were also 
found. For instance, while the effects of the proportion of own land (z3), freestall 
housing (z4) and use of a milking parlor (z5) on intensive farms’ efficiency are 
statistically significant, they are not significant determinants of extensive farms’ 
efficiency. In particular, the proportion of own land is found to reduce technical 
efficiency. This effect may be due to the possibility of choosing optimal rental land in a 
context where many farms abandon production, leaving its land unused.14 As in Corral 
et al. (2011), freestall housing is found to improve technical efficiency and the use of a 
milking parlor diminishes technical efficiency. On the other hand, the number of plots 
(z1) reduces the technical efficiency of extensive farms, as was expected, while it is not 
significant for the intensive farms (though it is almost significant at the 10% level). A 
Wald test allows us to reject the hypothesis that both effects are of the same magnitude 
in both technologies.15 As expected, the impact of LF on farm productivity is larger for 
those (extensive) farms where milk production is mostly dependent on self-produced 
foodstuff.  

INSERT TABLE 6 

INSERT TABLE 7 

We have also performed several simulation exercises to analyze the effects of a 
potential reduction in the number of plots due to a hypothetical land concentration 
process. In particular we examine the evolution of milk production, farms’ variable 

                                                           
11

 See Roibas and Alvarez (2010), Roibas and Alvarez (2012) 
12  In this case, the value of the Wald test is 89.29, which is significant for any usual level of significance. 
13

 The expected technical efficiency is calculated using the formula FG�H = @AI2 J⁄  
14

 The number of farms in Asturias descend from 42824 in 1999 (INE, 2014a) to 22688 in 2009 (INE, 
2014b) 
15

 It takes a value of 4.31, which is significant at 5% level. 
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profits and the probabilities (both prior and posterior) of adopting the extensive 
technology when the number of plots is progressively reduced from its current value to 
10% of this value. This range of values includes the reduction in the number of plots 
achieved in the land concentration processes carried out in Asturias, which roughly 
corresponds to a 27% reduction of its initial value. 

The simulation exercises rely on the estimated coefficients of the efficiency 
determinants to calculate the technical efficiency of each observation associated with a 
particular number of plots, maintaining the rest of the efficiency determinants constant. 
For each observation, the simulated production level is obtained by multiplying the 
technically efficient production level (which is computed using the parameter estimates 
of both extensive and intensive frontiers) and the corresponding technical efficiency 
score. Figure 1 shows the average increase in production for extensive and intensive 
farms depending on the percentage reduction in plots.16,17 Figure 2 resumes the impact 
of the reduction in the number of plots on the variable profits of extensive and intensive 
dairy farms. The simulated variable profits were computed by multiplying the simulated 
production by milk price and then subtracting feed purchases, forage production 
expenses and animal expenses. 

INSERT FIGURE 1  

INSERT FIGURE 2 

Figure 1 shows that reducing the number of plots to 27% of its current value 
generates a 6% production increase for extensive farms and a 2% increase for intensive 
farms. Therefore, our calculations show that a land consolidation process would have a 
much larger impact on extensive farms’ productivity. In addition, our simulation in 
Figure 2 shows that reducing the number of plots to 27% of its current value would 
increase extensive farms’ profits by 16%, while this profit increase would be much 
lower (6%) for intensive farms. This result is roughly in line with Corral el al. (2011), 
who, considering a common technology for the whole set of farms, found an 11.7% 
increase in variable profits with a similar reduction in the number of plots. 

Prior probabilities of belonging to the extensive group were simulated using the 
parameters presented in Table 2. Again, we calculate the prior probabilities using the 
current number of plots and the reductions described above, given the values for each 
observation of land and concentrates per cow. Posterior probabilities were calculated 
using the simulated prior probabilities and assuming that the reductions in the number 
of plots do not affect the relative goodness-of-fit of both (i.e. intensive and extensive) 
sets of parameters.18 Figures 3 and 4 provide the average probability of belonging to the 
extensive group for extensive and intensive farms respectively. 

                                                           
16 The simulation uses the parameters in Tables 6 and 7. It is worth noting that the effect of the number of 
plots on intensive farms’ efficiency is not significant and the results related to these farms must therefore 
be interpreted with caution. 
17

 Percentage increases in production do not exactly correspond to increases in technical efficiency 
because while the former are calculated by dividing the increase in production due to the reduction in the 
number of plots by the expected production with the current number of plots, the latter are calculated 
using as denominator the efficient and not the expected production. 
18

 In particular, we assume that the reductions in the number of plots do not alter the ratio of likelihood 
functions:  
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INSERT FIGURE 3 

INSERT FIGURE 4 

Both figures show that the probability of belonging to the extensive group 
increases when the number of plots declines. In particular, Figure 4 shows that a 50% 
reduction in the number of plots leads the average prior and posterior probabilities of 
intensive farms to be 69% and 59% respectively. Hence, a 50% reduction in the number 
of plots could provide sufficient incentives for most of the intensive farmers to adopt 
extensive production processes. Moreover, a reduction in the number of plots similar to 
that achieved by the concentration processes carried out in Asturias would yield prior 
and posterior probabilities values of 90% and 84% respectively. Consequently, such a 
reduction in the number of plots would induce most intensive farmers to choose the 
extensive technology. 

4. Conclusions 

LF has frequently been found to be a handicap in agricultural production, suggesting 
that land consolidation processes could help in improving farms’ productivity and 
profitability. As the effect of LF on dairy farm productivity is related to foodstuff 
production inside the farm, two different hypotheses are analyzed in this study. First, as 
LF may make it difficult to produce foodstuff, we test whether its impact is larger on 
extensive farms, which are more dependent on self-produced feed, than on intensive 
farms. Second, as LF may mainly affect extensive production, we test whether it will be 
an obstacle to adopting such a technology. Both hypotheses have been analyzed using a 
latent class stochastic frontier approach where the number of plots is included as a 
determinant of technical efficiency and as a variable conditioning the technology choice 
by farmers. 

Our results show that, in effect, the impact of LF is larger on dairy farms using 
extensive production processes. Therefore, any policy reducing the number of plots will 
mainly affect the productivity - and thus the profitability - of extensive dairy farms. In a 
context where the price of milk is expected to fall due to the disappearance of 
production quotas, a land consolidation process may be crucial for the survival of dairy 
farms even in regions where the climatic conditions are ideal for milk production. 

Our analysis also indicates that LF conditions the technology choice of farmers and 
proves to be an important obstacle to the adoption of extensive production processes. 
This is an important result given that the extensive production technology generates less 
ground and water pollution than the intensive technology. For this reason the Common 
Agricultural Policy provides incentives to dairy farmers to adopt extensive production 
processes. However, our results demonstrate that the change from an intensive to an 
extensive technology is unlikely when the farm land is highly fragmented. Land 
consolidation processes could be considered as a necessary complement to other 
environmental policies in order to encourage intensive dairy farmers to adopt a less 
polluting technology. 

                                                                                                                                                                          LMNO�PQO�∑ LMNOROST �PQO�. 
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Future research should explore the technology change from intensive to extensive 
production processes. Indeed, our simple latent class model ignores the temporal nature 
of the data, with the consequence that a given farm may move freely from one class to 
another over time. Although switching from intensive to extensive production processes 
is technically possible in our case (and vice versa), we would expect some degree of 
persistence in class membership, as adoption of a different technology is likely to 
involve important adjustment costs. To appropriately deal with this issue, an alternative 
latent class model which explicitly considers the transition from one class to another 
should be developed. Such an analysis would require a database including information 
about the farms’ number of plots during the whole sample period. 
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Table 1: Summary Statistics of the Dairy Farms 
Variable Average Std. Dev. Max. Min. 
Milk 330900 227033 1322276 9079 
Labor 4577 2623 53310 160 
Cows 42 23 151 3 
Feed purchases 158433 120749 1172081 10809 
Forage production expenses 29915 24413 195297 675 
Animal Expenses 15324 11964 160366 769 
Coast 0.70 0.46 1 0 
Plots 13.29 7.92 46 2 
Family labor 0.93 0.19 1 0 
Own land 0.56 0.28 1 0 
Housing 0.53 0.50 1 0 
Milking 0.49 0.50 1 0 
Concentrates/cow 3546 1214 14801 885 
Land 19 10 82 2 
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Table 2: Prior probability of using extensive technology 
Variable Estimates t-Statistic 
Constant 0.343 1.547 
q1 -4.612***  -6.366 
q2 1.386***  3.539 
q3 -4.141***  -6.416 

*Indicates significance at 10%; **  significance at 5%; ***  significance at 1% 
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Table 3: Average values of variables for extensive and intensive farms 
Variable Extensive Farms Intensive Farms 
Milk 305611 360591 
Labor 4595 4556 
Cows 41 43 
Feed purchases 135186 185727 
Forage production expenses 28645 31406 
Animal Expenses 14410 16397 
Coast 0.78 0.61 
Plots 9.49 17.75 
Family labor 0.95 0.91 
Own land 0.54 0.58 
Housing 0.47 0.61 
Milking 0.44 0.54 
Concentrates/cow 3050 4128 
Land 20 18 
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Table 4: Production function frontier parameters for extensive farms 
Variable Estimates t-Statistic Variable Estimates t-Statistic 
Constant 12.423***  539.114 (ln x4)

2 0.032 0.969 
ln x1 0.005 0.307 ln x4×ln x5 0.015 0.499 
ln x2 0.367***  10.610 (ln x5)

2 0.035 0.866 
ln x3 0.448***  21.516 Coast -0.013 -0.927 
ln x4 0.080***  5.647 D2000 0.015 0.546 
ln x5 0.102***  5.812 D2001 0.034 1.289 
(ln x1)

2 0.066 1.553 D2002 0.078***  2.808 
ln x1×ln x2 0.344***  5.220 D2003 0.142***  5.235 
ln x1×ln x3 -0.118***  -2.911 D2002 0.158***  5.953 
ln x1×ln x4 -0.076**  -2.507 D2005 0.246***  9.159 
ln x1ln x5 -0.019 -0.476 D2006 0.260***  10.213 
(ln x2)

2 -0.310***  -2.844 D2007 0.227***  9.247 
ln x2×ln x3 -0.210***  -2.622 D2008 0.150***  6.156 
ln x2×ln x4 0.156**  2.465 D2009 0.174***  6.869 
ln x2×ln x5 0.100* 1.934 D2010 0.221***  8.152 
(ln x3)

2 0.215***  3.503 D2011 0.181***  6.806 
ln x3×ln x4 -0.075**  -2.516 Ln σv -2.422***  -25.671 
ln x3×ln x5 -0.063* -1.677    
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Table 5: Production function frontier parameters for intensive farms 
Variable Estimates t-Statistic Variable Estimates t-Statistic 
Constant 12.428***  659.608 (ln x4)

2 0.082***  2.774 
ln x1 0.081***  5.831 ln x4×ln x5 0.081***  3.067 
ln x2 0.719***  23.256 (ln x5)

2 -0.104***  -2.598 
ln x3 0.245***  10.374 Coast 0.049***  5.178 
ln x4 0.042***  3.201 D2000 0.040**  2.161 
ln x5 0.058***  4.304 D2001 0.061***  3.265 
(ln x1)

2 0.032 1.161 D2002 0.095***  4.664 
ln x1×ln x2 0.047 0.923 D2003 0.114***  5.970 
ln x1×ln x3 -0.056 -1.355 D2002 0.136***  7.023 
ln x1×ln x4 0.008 0.309 D2005 0.207***  10.834 
ln x1ln x5 -0.027 -0.979 D2006 0.254***  14.153 
(ln x2)

2 0.691***  4.575 D2007 0.209***  10.989 
ln x2×ln x3 -0.371***  -3.559 D2008 0.140***  7.354 
ln x2×ln x4 -0.273***  -5.297 D2009 0.194***  10.159 
ln x2×ln x5 0.021 0.366 D2010 0.208***  9.983 
(ln x3)

2 0.088 0.896 D2011 0.189***  8.822 
ln x3×ln x4 0.089**  2.465 Ln σv -2.885***  -25.311 
ln x3×ln x5 0.089* 1.858    
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Table 6: Efficiency determinants for extensive farms 
Variable Estimates t-Statistic 
Constant -1.870***  -13.923 
z1 0.665***  3.192 
z2 0.661 1.607 
z3 -0.242 -1.504 
z4 -0.143 -0.688 
z5 -0.003 -0.013 
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Table 7: Efficiency determinants for intensive farms 
Variable Estimates t-Statistic 
Constant -2.572***  -13.096 
z1 0.188 1.611 
z2 0.240 1.022 
z3 0.727***  3.002 
z4 -0.524* -1.781 
z5 0.903***  2.860 
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