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1. Introduction

Reducing energy consumption and emissions is gokégy objective for most
governments across the globe and the promotioneriyg efficiency policies is seen as
a key activity to achieving this goal. In practitke achievement of savings in energy
consumption depends on two issues. First, it & thtat policy makers be able to clearly
measure the relative energy efficiency across stabel over time. Second, the actual
savings in energy consumption might not coincidéhhe expected savings due to the
so-called rebound effect, a phenomenon associatbdive consumption of energy and
energy services. When the production of an enezgyice becomes more efficient, then
the cost per unit of this service decreases. Tdss reduction can produce an increase in
the consumption of the energy service that mighte@st partially) offset the expected
savings in energy consumption derived from the @gneefficiency improvements.
Measuring the rebound effect is thus crucial ineordo properly evaluate the
effectiveness of any energy policy instrument thiats to promote energy efficiency
improvements.

Regarding the first issuéjlippini and Hunt (2011, 201290int out that defining
and measuring energy efficiency and creating sizdismeasures as descriptors is a
challenging task. They propose the use of a Stdch&sontier Analysis (SFA)
approach to control for characteristics such assthecture of the economy that might
bias the usual energy efficiency indicators. Thasthors illustrate their proposal by
estimating an aggregate energy demand frontier hfodéhe total energy consumption
of a sample of OECD countries and for the residéminergy consumption of the US
states. The SFA approach allows them to obtainuge®pmeasure of the inefficient use
of energy (i.e. ‘waste of energy’) for each courtrystate.

Concerning the second issue, there is a large nuofbempirical studies that
use econometric methods to estimate the rebouadtefh their review of the literature,
Sorrell and Dimitropoulos (200&have found a lack of consensus with regard to a
consistent method to measure the rebound effecprilrciple, it could bedirectly
obtained from the elasticity of demand for energgiges with respect to changes in
energy efficiency. However, relatively few studfeBow this approach because data on
either energy services or energy efficiency arevait@ble or are limited in terms of
accuracy. As a consequence the rebound effectaa ofdirectly measured through the
estimate of different elasticities that are conssdemeasures of energy efficiency
elasticities of the demand for energy, such astie-price elasticity of the demand for
energy.

The main contribution of this paper is to link tleeergy demand frontier
approach with the estimation of the rebound efféée. first bring attention to the fact
that the frontier model introduced Iyiippini and Hunt (2011, 201Zalso provides a
direct measure of the rebound effect. However, veentpout that a traditional
specification of this model implicitly imposes araelor more accurately, constant)
rebound effect, which contradicts most of the aldéd empirical evidence. We next
suggest estimating a more comprehensive model l&x rine zero rebound effect
assumption and examine the compliance with sontbeofestrictions used in previous
studies focused on estimating the rebound effenglexconometric techniques.

The paper is organized as follows. The next sedigiines the rebound effect
and provides a brief review of the empirical litere on measuring it using
econometric models. Both standard and extendedygrmand frontier models and
the econometric specification of our model areadtrced in Section 3. The data and
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results of the estimates are presented in Sectittda summary and conclusions in
the final section.

2. Measuring therebound effect: a short review of theempirical literature

The rebound effect is a phenomenon associatedesigingy consumption. This
concept has to do with the idea that an increasharevel of efficiency in the use of
energy decreases the marginal cost of supplyirggtaio energy service and hence may
lead to an increase in the consumption of thatiservihis consumer reaction might
therefore partially or totally offset the predictedduction in energy consumption
attributed to energy efficiency improvements usemgjineering models. Measuring the
rebound effect is thus crucial in order to propeshaluate the effectiveness of any
energy policy instrument that aims to promote epefficiency improvements. This
issue is particularly relevant for the US residainsiector since it accounts for 37% of
the national electricity consumption, 17% of gremuge gas emissions and 22% of
primary energy consumptiom(ernational Risk Governance Council (IRGC), 2013

The definition of the rebound effect encompassterént mechanisms that may
reduce potential energy savings derived from thpravements in energy efficiency.
Frequently, three types of rebound effect are misiished in the specialized literature.
The first one is thelirect rebound effect, which measures the increase imseeof the
product or service that has experienced the effogiegain. For instance, a homeowner
may employ a portion of the energy savings frorngisan efficient heater to use the
heater for longer periods during the winter to wahm house. The second type is the
so-calledindirect rebound effect and measures the reallocation efggnsavings to
spending on other goods and services that alsoreegergy. For instance, the savings
derived from the use of energy-efficient appliane¢éshome can be spent on travel
holidays which may lead to an increase in energysemption and greenhouse gas
emissions. The third type is tkeonomy-wideebound effect and captures the structural
changes in the economy due to the variation ofepriof goods and services as a
consequence of energy efficiency improvements. dldwmnges may produce a new
equilibrium in the consumption of goods and sewidencluding energy) in the
economy.

There is an extensive literature on the conceptraedsurement of the rebound
effect and several approaches have been applidd twvé aim of quantifying this
phenomenon. For instance, in their report for thée Ehergy Research Centr@prrell
and Dimitropoulos (2007find a wide range of methods that have been apple
measure the direct rebound effect. They identifyeast four empirical approaches -
single equation models, structural models, distretginuous models, and household
production models - and several estimation techesqocluding ordinary least squares,
instrumental variables or maximum likelihood. Indagbn, several empirical strategies
have also been used to indirectly measure thisurebeeffect. An outline of these
approaches can be found Tmble 1 This table shows three theoretical relationships
between two elasticities. The left-hand side etdgtis the energy efficiency elasticity
of the demand for energy, which is used to caleuliie clearest and most direct
measure of the rebound effect (seeunders, 20QGand Section 3 below). The lack of
accurate data on energy services or energy efagiggpically precludes a direct
measurement of the rebound effect based on thsti@tg, so that its estimation is
usually carried out using the right-hand side efdlgquations ifable 1

[Insert Table 1 here]
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The first empirical approach relies on estimating €énergy efficiency elasticity
of the demand for energy services or useful woek th often available in personal
transportation studies. For this reason, this exeging-based approach is generally
used to measure the direct rebound effect assdardth travelling by private cars (see
for instanceGreeneet al., 1999b;or Small and Van Dender, 2009 ore studies follow
the second empirical strategy, based on an estiofatee energy cost elasticity of the
demand for useful work. This approach has been aded byKhazzoom (1980Q)
Greeneet al. (1999a) Berkhoutet al. (2000) and Binswanger (2001and, unlike the
first approach, it provides a way to estimate thegnitude of the rebound effect even
when the available data provides little or no va@rrain energy efficiency. However,
the validity of this approach relies on the assuompthat consumers respond in the
same way to decreases in energy prices as thayidgptovements in energy efficiency
(and vice versa). ASorrell and Dimitropoulos (200§ointed out, this assumption is
likely to be flawed in many cases. These two apgresa require accurate measures of
the demand for useful work. This restriction hassbd research studies towards
personal transportation and household heating, ewti@ta about energy services can be
easily calculated, e.g., vehicle kilometres in¢hee of transportation.

It is also possible to estimate the direct reboefféct from the own-price
elasticity of the demand for energy, i.e., thedhapproach. While obtaining measures
of useful work can be difficult, data on energy @ is more commonly available.
The main advantage of the third approach over pteviapproaches is that data on
either useful work or energy efficiency is not reggd. This explains why the approach
based on the own-price elasticity of the demancetfargy is the most popular empirical
strategy to measure the rebound effect in otherggneommaodities or sectors (see for
instanceZein-Elabdin, 1997 Berkhoutet al, 200Q Roy, 2000and Bentzen, 200¢
However, Sorrell and Dimitropoulos (2008ointed out that this empirical strategy
might also yield biased estimates for the rebouffidceif energy efficiency is not
explicitly controlled for' In this paper, we propose another approach baseth®
estimation of an energy demand frontier functionthis framework, the rebound effect
is directly estimated from the elasticity of thendnd for energy with respect to
changes in the level of energy efficiency.

There is a huge variety of estimated rebound effectthe literature not only
because different methodological/empirical appreadimave been used but also because
they have been used to analyse the rebound effedifferent energy commodities,
sectors, countries or different levels of data aggtion. Since our paper is focused on
residential energy demand, we pay attention maiolythe results of papers on
household energy demandorrell and Dimitropoulos (2007)nd that for household
heating the rebound effect usually ranges from 10%8% in the short-term and from
1.4% to 60% in the long-termHousehold energy demand is dominated by the use of
fuel and electricity for heating space. Focusingcsically on papers in which the price
elasticity of total household electricity demand astimated, the estimated values
suggest an upper bound for the short-term rebotfiedten the range of 20% to 35%
and between 4% and 225% for the long-term reboffiedteRegarding other household
energy services, the reviewed studies suggest @unebeffect up to about 26% for

Y In particular, this approach relies on the assionphat energy efficiency is unaffected by chaniges
energy prices.

2 These rebound effects indicate percentage (exgmeissrelation to the predicted energy saving) by
which the actual energy consumption is larger tienpredicted energy consumption after an effigienc
improvement. The measuring of the rebound effeekdained in detail in the next section.
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space cooling. Other studies produce rather difteresults. For instanc&uertinet al.
(2003) estimate long-term rebound effects for both watbeating and
appliances/lighting and obtain values between 3a68649%.

A recent survey can be found in a report on eneftigiency carried out by the
IRGC (2013) This survey is based on the reviewsGoteninget al. (2000} Sorrell
(2007)and Jenkinset al. (2011)and summarises the large variety of results obthin
from papers that measure rebound effects in thideneisal sector. This report shows
that while for residential lighting there is a rawrrange of results of the rebound effect
from 5% to 12%, in the rest of energy servicesdhsra wider range of values: for
space heating the range goes from 2% to 60%, frespooling from 0% to 50%, for
water heating from less than 10% to 40%, and fbelotonsumer energy services from
0% to 49%. As it can be seen, this more updatecegishows very similar values to the
report previously mentioned.

However it should be noted that in our paper wémede a demand function
aggregated at state-level for the US residentiatggn Therefore our estimated rebound
effect captures an overall effect composed of tha ef direct and indirect effects and
hence the ideal lower and upper bounds for oumaséis are not entirely clear. The
literature has identified large positive as welhagative values for the indirect rebound
effect, as found imhomas and Azevedo (201for the household case. There are some
papers that exhibit large direct rebound effectsshsasMizobuchi (2008)where a
rebound effect of about 27% is found for Japanes@séholds although the effect
increases to 115% when capital costs are ignorethenanalysis. Indirect rebound
effects are usually larger than direct reboundat$f@nd it is less ‘uncommon’ to find
indirect rebound effects larger than 100%. Somanges can be found inenzen and
Dey (2002)with an indirect rebound effect of 123% for AusttaAlfredsson (2004)
with an indirect rebound effect up to 300% in SwedeBrannlundet al (2007)with
an indirect rebound effect between 107-115% in, @@issions in a simulation of an
efficiency improvement in heating and transportt@ec In some cases this rebound
measures can reach extremely large values, &suokmanet al. (2010)who found
indirect rebound effects up to 515% for the casthefUK.

3. Measuring rebound effects using energy demand frontier models

In this section, firstly we summarize the aggregatergy demand frontier
model proposed byilippini and Hunt (2012)to measure the level of “underlying
energy efficiency” in the US residential sectorbSequently, we link this model to the
literature on the rebound effect and we introducei@ae comprehensive model that
allows estimating ‘non-zero’ rebound effects usiag SFA approach. Once the
econometric specification of the model is presenaelfinally discuss new econometric
issues that appear when the more general SFA appisaused to estimate rebound
effects.

3.1. The standard energy demand frontier model

This approach treats energy as a production facted in combination with
other inputs to produce energy services, and atsetopmeasure inefficiency in the use
of input energy as (positive) deviations from arrgy demand frontier function that
can be estimated for the whole economy or for @&mjisector. In general terms, the
aggregate energy consumption can be written aswell
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q=F(Y,P, X, EB) & (1)

whereq is the aggregate energy consumptiéis the real incomeR is the real energy
price, f are parameters to be estimated, aht a set of control variables such as
population, average household size, heating dedage cooling degree days, the share
of detached houses, or time dummy variables. Whiethe conventional noise teris,

is the level of energy efficiency of a particultaite. Since the energy efficiency level is
not observed by the researcherippini and Hunt (2012made use of two assumptions
in order to estimate equation (1). Firstly, theypiititly assumed that the energy

demand function iseparablein the sense that (Y, P, X, E,,B) in (1) is decomposed

into a function that does not depend on energyieficy and an energy-efficiency
function, that is:

F=f(Y,P,X,8) N B (2)

whereh(E) is in turn assumed to be equal t&.1The second assumption is that the
unobserved energy efficiency term is bounded (E<1). These two assumptions
allow using the stochastic frontier approach asmioelel to be estimated can now be
written in logs as:

Ing=Inf(Y,P, X,8)+ w u (3)

whereu=-In E>0. The error term in (3) thereby comprises two iretegent parts. The
first part, v, is the classical symmetric random noise, oftesumed to be normally
distributed, i.ev~N(0&?). The second part), is a one-sided error term capturing the
level of underlying energy inefficiency that canrywaacross states and over time.
Following Aigner et al. (1977)it is often assumed to follow a half-normal disttion,
i.e. u~N'(0,0,%). The identification of both random terms in thisodel (ALS
henceforth) relies on the asymmetric and one-saigtibution ofu. If the inefficiency
term could take both positive and negative valiasgsnnot be distinguishable from the
noise termy.

Equation (3) is the basic specification of the ggedemand frontier that is
estimated inFilippini and Hunt (2011, 2012in order to get state-specific energy
efficiency scored.In the case of an aggregate residential energyadéniunction,

f (Y, P, X,/?) reflects the demand of the residential sector state that haand uses

fully efficient equipment and production procesdés state is not on the frontier, the
distance from the frontier measures the level oérgy consumption above the
minimum demand of reference, i.e. the level of gnénefficiency. Nevertheless, from
an empirical perspective, the aggregate level @rgn efficiency of US residential
appliances is not observed directly, and theref@® to be estimated simultaneously
with other parameters of the model. For this redastonpini and Hunt (2011, 2014)se
the expression ‘underlying energy efficiendy’.

% The estimation of (3) can be performed using eithess-sectional or panel data as-ifppini and
Hunt (2011, 2012)They also propose to use a relatively simplelémgfunctional form.

4 Filippini and Hunt (2011, 2012pdvocate using panel data techniques to controlpfutential
endogeneity problems caused by omitted variablesnobserved heterogeneity, an issue that is briefly
discussed later on.
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3.2. The (implicit) rebound effect in the standargtrgy demand frontier model

Although the basic concept of the rebound effeabas controversial, several
mathematical definitions of this effect have bemplyed in the literature according to
the availability of price and efficiency datadere we use the definition mentioned by
Saunders (2000which, in our opinion, provides one of the clearasd most direct
measurements of the rebound effect. Following #nishor, the rebound effect is
obtained as:

R=1+¢&, 4)

where ¢, is the elasticity of energy demand with respectchanges in energy
efficiency, i.e.e. =dIng/aln E. Table 2shows the different rebound effects that we

can find in a particular empirical application. Taetual saving in energy consumption
will only be equal to the predicted saving from ieegring calculations when this
elasticity is equal to minus one and hence themn® ilebound effectR=0). The rebound
effect would be positiveR>0) if actual savings in energy consumption are lgsn
expected, i.e.-1<¢g.. The rebound effect could be larger than ofe1] if

improvements in energy efficiency increase energymsamption and hence the
elasticity of energy demand with respect to chamgenergy efficiency is positive, i.e.
&: > 0. This somewhat counterintuitive outcome is terrtimtkfire’ in the literature

(Saunders, 1992 In practice, negative rebound effecB<Q) can also be found for
some observations if the improvements in energgieffcy produce larger decreases in
energy use than predicted, i.e. <-1. Saunders (2008labelled this - also rather

counterintuitive - outcome as ‘super-conservatfon’.
[Insert Table 2 here]

As the one-sided error term in (3) is measuringléwvel of underlying energy
inefficiency, the elasticity of energy demand witbspect to changes in energy
efficiency is simplys. =-adlIng/d u. Given the rebound effect definition provided by

equation (4), we can then conclude that any engegyand frontier model that includes
an inefficiency term as an explanatory variableliomy provides adirect measure of
the rebound effect. However, sinee in (3) is equal to —1, the standard SFA energy

demand frontier model implicitly imposes a zeroaefd effect, which contradicts most
of the available empirical evidence surveyed intiSac.

So far we have shown the implications of the steshd8FA energy demand
frontier model on the measurement of rebound edfeblext we will discuss the
implications of the rebound effect story on botkntification and measurement of the
underlying energy efficiency. A key conclusion tlate can get from the extensive
literature focused on measuring the relationshigveen energy efficiency and energy
demand is that the rebound effect tends to atteneaiacerbate, or even reverse the
effect of improvements in energy efficiency on gyeconsumptiori. Therefore, the

® See, for instanc&orrell and Dimitropoulos (2008)

® For a more extended definition and some examphesutathis counterintuitive phenomenon see
Saunders (2008)

"It is not easy to find a similar phenomenon in durction economics where SFA models have
traditionally been applied. In that literature amprovement in firms’ efficiency is assumed to have
proportional effect on firms’ performance (outputsst, etc.). Just to conjecture an example, aafort
rebound effect might appear in public firms whemgptoyees’ salary is not linked to their productviin
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rebound effect issue can be introduced ineaergy demandpplication of the SFA
approach as eorrection factor(1-R) that interacts with the energy inefficiency tefum
that is appended to the stochastic energy demantldr. That is:

Ing=In f(Y,P, X,8)+ w(1- Rt (5)

where againu=-In E>0. In this model, the effect on energy consumptiennbt
necessarily proportional to the reductioruinits effect is attenuated when the rebound
effect is partial (i.e. when 1), exacerbated in case of super-conservatioromes
(i.,e. whenR<0), or reversed in case of extremely large reboeffelcts or backfire
outcomes (i.e. wheR>1).

Another interesting conclusion that can be inferiredn the above equation is
that any effort to improve energy efficiency of tberrent set of appliances (or their
use) would not produce any change in energy consompf consumers’ reaction
completely offset the potential energy savings, lagace the rebound effect is full. This
implies that, in an energy demand setting, the tyidg level of energy efficiency
cannot be identified and estimatedR#1, since the energy demand model only have
one (and symmetric) error term in this case. ThHemoway around, this discussion
suggests that it only makes sense to estimatechasgtic energy demand frontier model
when we believe that the rebound effect is not 100%

3.3. A frontier energy demand model with non-zetwund effects

Let us move to the estimation of a frontier enedgynand model with non-zero
rebound effects. To achieve this objective we sthaldal with several practical issues.
The first one has to do witR in (5) that, like theenergy inefficiency level, is not
observed by the researcher because it is linkedetdemand for energy servigess,
again a latent variable. To deal with this isfuean be approximated with a set of
determinants of the demand for energy serviced) asancome and energy prices, i.e.
z=(Y,P). This seems to be reasonable as most of thatliter on the rebound effect
associates the rebound effect with energy priced,tlae theory often predicts that the
rebound effect declines with incorfie.

If we replace the rebound effect variaBéy a rebound-effect functiorR(V z)
, the model that can be estimated in practice is:

Ing=In f(Y,P, X,8)+ w[1- Ry ¥] | (6)

wherey are new parameters to be estimated. Several stitgyeremarks should be made
regarding this specification. First, if the reboteféect function does not depend on any
covariate, our model simply collapses to the basichastic frontier demand model
used inFilippini and Hunt (2011, 2012that imposes zero (i.e. constant) rebound

effects. In contrast, ifR()' z) varies across observations or states, the abavatien

this case, an employee who works efficiently cduddome “lazy” after a salary improvement since his
earnings do not depend on his effort.

8 Wanget al. (2012)point out, for instance, that the marginal utilityenergy service consumption will
decline as household income increases. Thus, emdfigiency improvements may not induce people to
consume as much energy services as before. Thigsntleat the direct rebound effect might declinehwit
the increase in household income. This is alsoigoefl in a limited number of studies, egnall and
Van Dender (2007andWanget al. (2012)that have found evidence of a negative relationbeipveen
the rebound effect and income.
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allows us to get state-specific rebound effects tdam be used for further analyses.
Interesting enough, i includes income and energy prices, the estimateh also be
used to test whether both income and price eltis8cof energy demand depend on
energy efficiency.

Second, unlike in production economics where alamaorrection factor to our
R function is often treated as part of firms’ inefncy, we point out in this paper that

R(V z) is also -or mainly- capturing a rather differentnature phenomenon, i.e. the
rebound effects associated to improvements in griegfficiency.

Third, several specifications dR(V z) can be used in a particular empirical

application. Saunders (2008p)ecommends using extremely comprehensive (flexible
functional forms such as the Gallant and Fouriem& which can depict the full range
of rebound values. These forms are however intobeia our framework as they would
interact with the stochastic part of the model aheince, the maximum likelihood
function would be highly non-linear in parametdrs.this sense, as the choice of a
particular function in this setting is limited bypth methodological and practical issues,
we propose exploring two simple rebound-effect fioms:

Ry 9= "
e
Rra=1 ®

Whereas the rebound-effect function in (7) can depny value from full
rebound tasuper-conservatioSO outcomes (i.eR<1), the rebound-effect function in
(8) precludes this somewhat counter-intuitive ooteas it only allows fopartial (PA)
rebounds-effects (i.e.<®<1). In both cases, a positive (negative) valug/ ofdicates
that the rebound effect increases (decreases)awlths worth noting that the SC and
PA functions are respectively equal to 0 and 0.2mpz=0. This might occur when
either allyparameters are zero, or whHemloes not include a constant term an@.*°

It should be noted that both specifications (7) &8 of the rebound effect
preclude the existence of backfire outcomes. Thisiat a coincidence as we must
impose the restrictiorR<1l to our rebound-effect functions in order to idigtish
inefficiency from noise. Otherwise, the second eterm in equation (6) would no
longer have a one-sided distribution and then welavoot be able to take advantage of
the asymmetric distribution af to decompose the overall error term into two défe
stochastic components.

Other specifications have been examined in preweusions of this paper, such
as the simple cumulative density function of a dgad normal variable@, which like

® Indeed, both elasticities can be respectivelytemias:

. =0Ing _onf(Y,P, x,ﬁ)+aF(Y, Py)

y InE
alny dinyY dinyY

= ding _aInf(Y,P. X5 oRY, F?y)InE
dinP dinP din P

19 Most explanatory variables are centred at the &amgan to attenuate convergence problems when
estimating the model using maximum likelihood tequoes. Hence,z=0 for the representative
observation.
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the PA function lies between zero and one, or #étie @/(1-®), which allows for super-
conservation outcomes as does the SC model. Thiksre$ these models are not shown
in the paper as they are very similar to thoseinbthwith the proposed models.

Finally, equations (6) with specification (7) or) (8r the rebound-effect
function cannot be estimated if R includes a sdpdrantercept and we assume that

o, =€, as in the ALS model. This can be easily seehéncase of the SC function. In

this case, we can rewrite @®)-as e ”*™"?. A detail that is important here is that the
estimated intercept of the rebound-effect funci®hiasedbecause it also captures the
parameters, that measures the standard deviation of the enegjficiency term,u.
That is, ), = y, - J,, and hencey, and J, cannot be estimated simultaneousiyA

simple empirical strategy is proposed to deal whik issue. This strategy relies on the
assumption that our energy inefficiency term fokothe same distribution in both
equations (3) and (6), so that the ALS estimatg/ofs used to adjust the estimated

intercept of (1R) accordingly.

4. Data and results

Our empirical application is based on a balancedobi! data set for a sample
of 48 states over the period 1995 to 2011. Thawveshave added four years to the data
set used inFilippini and Hunt (2012) For the purposes of this paper attention is
restricted to the contiguous states (i.e. Alaska ldawaii are excluded) except Rhode
Island because of incomplete information: The Mustof Columbia is included and
considered as a separate ‘state’. The datasetsedban information taken from three
sources. Residential energy consumption quantdies prices are provided by the
Energy Information Administration (EIA). Populatioand real disposable personal
income are from the Bureau of Economic Analysigshef US Census Bureau and the
heating and cooling degree days are obtained fhreniN&ational Climatic Data Center at
NOAA. The number of housing units comes from the C&hsus Bureau and the share
of detached houses for each state is based oretre2)00 census also obtained from
the Census Bureau. Descriptive statistics of tlyeviegiables are presentediinble 3

[Insert Table 3 here]

If we assume a Cobb-Douglas demand function, thaauetric specification of
the model can be written as:

g, =[B+ B NY, + 5 In R+ B In X]+(1- R) y+ y 9)

where subscriptstands for state, subscrigs time,vi ~N'[0,0,], andu;~N'[0,0,]. Our
dependent variablegy) is each state’s aggregate residential energyucopson for
each year in trillion BTUs. The income variabMé;)(is each state’s real disposable
personal income for each year in million 1982 USHe price variableR;) is each
state’s real energy price for each year in 1982 p&$nillion BTUs. The set of control
variablesX;; includes PopulationROP;), the heating and cooling degree daf®D;;
andCDDy), the average size of a househddH§&;) obtained by dividing population by
the number of housing units, and the share of dethbouses for each stagDH).

1t is worth mentioning that this issue is not imamt in production economics as both options would
yield exactly the same results when modellmgrall firm inefficiency. However, if we estimate an
energy demand frontier function, it matters as veeilet be either magnifying or diminishing the rebdun
effect.
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Regarding the rebound-effect function, it is moellas a function of potential
economic determinants of households’ demand forggneervices, such as household
size, per capita income, and the price they mugfqaenergy. That isy’z is specified
as:

Vot ¥, In(Y/ POP)il +y.In P+y,In AHS (10)

If we impose that the rebound-effect function dnesdepend on any covariate,
we get the standard energy demand frontier modeha&®d in Filippini and Hunt
(2011, 2012) Since the PA rebound-effect function preventskehyt rebound effect
outcomes, it is our preferred model. However thecHation allowing for super-
conservation outcomes, i.e. the SC model, is amated for robustness purposes. All
models are estimated by maximum likelihood.

We show inTable 4the estimation results of our preferred frontieergy
demand models. The standard ALS model that impaseso rebound effects is also
shown for comparison grounds. Simple Likelihoodi®R4LR) tests indicate that both
the PA and SC models outperform the ALS model. énegal, both models perform
quite well as most coefficients have the expecigd and almost all are statistically
significant at the 5% level. This indicates tha¢ tlesults in terms of the estimated
coefficients tend to be robust across the two difie specifications of the rebound
effect.

[Insert Table 4 here]

Regarding the energy demand frontibe estimated coefficients can be directly
interpreted as elasticities as most of the vargahte in logarithmic form. The estimated
magnitudes of both price and income elasticitiescprite reasonable from a theoretical
point of view. The estimated frontier coefficierdsggest that US residential energy
demand is price-inelastic, with estimated elasésitof -0.10, -0.12 and -0.11 for the
ALS, PA and SC models respectively. The result® aigggest that US residential
energy demand is income-inelastic, with an estithalasticity of around 0.36 for the
ALS model but only about 0.24 for the models allogvfor non-zero rebound effects.

The positive coefficient on population obtained ah models suggests that
energy consumption increases with population, gitrentotal amount of disposable
income in a particular state. For weather, thereged cooling degree day elasticities
for all three models are rather high, whereas teemated heating degree day
elasticities are much lower. The estimated coefficiof average household size
suggests that as family size increases thereasdency to use less energy, indicating
that there are economies of scale with an estimatasticity larger than unity in
absolute terms. For the share of detached housesesults suggest that there is only a
marginal positive but significant influence on USidential energy demandl.

Table Sprovides descriptive statistics of the estimatedrgy efficiency for all
US states. The ALS values are obtained directiyngughe Jondrowet al. (1982)
formula. For the PA and SC models, the efficiencgres are computed dividing the
estimated value of the overall one-sided term (LeR)u, by (one minus) the estimated
values of the rebound-effect function. We show ehtgpes of results imfable 6in

12 As in Filippini and Hunt (2012)the estimated coefficients of the time dummiest (shown) are
significant in all models and although the ovetadhd in the coefficients is generally negativeytilo
not fall continually over the estimation periodfleeting the ‘non-linear’ impact of technical pregs and
other exogenous variables.
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accordance with different adjustments of the irgptan the rebound-effect function.
The first set of efficiency scores is obtained assg that equation (10) has “no
intercept” (i.e.y, =0) and hencel contains the whole estimated intercept. The second

set of efficiency scores labelled “ALS-adjustedlldws the empirical strategy that uses
the ALS estimate to adjust the estimated interoggigquation (10). The third efficiency
scores are obtained following the opposite strategihe first one, so in this case the
rebound-effect function is “not adjusted” as iassumed here thatdoes not contain an
intercept.

[Insert Table 5 here]

Table 5shows that the estimatealerage efficiency is between 45.5% and
98.7%. However, this wide range of results is duéhe models that consider that the
intercept may either be in the rebound-effect fiamcor in the inefficiency term. If we
focus on the ALS-adjusted results, the values nbthiwith the PA and the SC models
are much more reasonable (91.1% and 93.8% reseBgtiSimilar results were
obtained by-ilippini and Hunt (2012using several specifications of the homoscedastic
model. It is worth mentioning that the ALS modebguces similar efficiency scores to
those obtained when the intercept is properly aeljusThe efficiency scores clearly
decrease when the intercepts of the PA and SC mebeffect functions are not
adjusted. By contrast, the largest efficiency ssaee obtained when no intercept is
considered in the rebound-effect function. These ¢tases define the lower and upper
bound in the efficiency score estimates.

Regarding the rebound-effect function, recall froable 4that the coefficients
of both income per capita and price are alwayss$itzlly significant. The theory on
rebound effects often predicts that they shouldinleavith income, and the coefficient
of this variable is negative in both models. Thigplies that the states with larger
income levels have larger energy efficiency el@gs in absolute values, and therefore
their rebound effects are lower. This seems toigonthe aforementioned hypothesis
and is in line with the little available evidence this issue in the empirical literature
measuring rebound effects. On the other hand, disdiye coefficient obtained for the
price variable suggests that energy-inefficientestdnave more elastic energy demands.
This result is expected in theory as energy-inigffitstates tend to spend a larger share
of their income on energgeteris paribusand hence the so-called income effect is more
intense.

Our comprehensive frontier model of energy demdludva us to examine the
compliance with some of the restrictions often as=al in previous studies devoted to
estimating rebounds effects, but with different remoetric techniques. For instance,
most studies estimate the own-price elasticity hid demand for energy to get an
indirect measure of the rebound effect. The validif this papers hinges upon the
assumption that consumers respond in the same avdgdreases in energy prices as
they do to improvements in energy efficiency. Irrtigalar, most of the empirical
literature on rebound effects assumes that:

E=—¢&,-1 (11)
We label this restriction as tlssumption of equivalence in respons&®vious
papers assume that equation (11) is fulfilled fbobservations. As our model provides

elasticities for both energy prices and energycefficy, it allows us to examine (or
even test) this issue in a very simple way. Thetsy$ rewrite equation (11) as follows:
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& =at+tbeg , a=b=-1 (12)

Testing thata=b=-1 in an auxiliary regression allows us to examine th
fulfilment of this assumption. In the Appendix wdosv that if we use a PA
specification of the rebound-effect function, it mossible to directly test this
assumption. In this sense, the Wald test carrigdusing the estimated parameters of
our model suggests that energy and price elasscdre statistically different in our
case. As a consequence, the absolute value oflalsecegy of price in the frontier
cannot be used for measuring the rebound effestiggested by equation (11).

On the other handgsorrell and Dimitropoulos (2008pointed out that the
estimated price elasticities in previous studieghtnbe biased if energy efficiency is not
explicitly controlled for. The nature of this endwgity problem is clear in our
framework if the rebound-effect function dependstltom energy price and efficiency is
ignored because the overall error term in this easeld includeR and hence it would
be correlated with the energy price in the frontlarthis sense, our extended frontier
model clearly shows that it makes sense to follewppini and Hunt (2012)and
estimate a standard energy demand model usingntipérieal strategy proposed by
Mundlak (1978}o control for potential endogeneity problems.

We have also estimated our energy demand modealdimg the Mundlak's
adjustment but this adjustment does not affectestimated rebound effectsThis is
an expected result because our specification ofréheund-effect function already
controls for potential endogeneity problems thauldoappear if we ignore tha is
correlated with some of the energy demand drivEmns. robustness of our results might
also indicate that, given our specification Rf there are not significant traces of
endogeneity associated to the inefficiency tarpand hence there is no need to further
extend our model to deal with this extra and cursdee difficulty™*

Table 6 provides descriptive statistics for the overall @S&imated rebound
effects using the PA and SC models. It should balledd that there are no values larger
than unity in the PA model because its specificajiwevents backfire outcomes. In
addition to the “ALS-adjusted” specification, fooraparative purposes we show the
estimated rebound effects that are obtained if rtf®und-effect functions do not
contain an intercept or if the estimated intercisphot adjusted (i.e. it completely
belongs to the rebound-effect function). This tabl®ws that the average rebound
effect is 79% when our preferred PA model is used the intercept is adjusted using
the standard deviation of of the ALS model. It decreases to 56% when thar#del
IS used.

[Insert Table 6 here]

Generally speaking, our rebound effects tend ttakger than those obtained in
the empirical literature using micro-data on theedi rebound effects of household
energy demand (see our discussion in Section 2h diferent issues can partially
explain this result. First, note that our estimatelound effects involve more than one
energy service, and hence they are not only caqgtutirect but also indirect effects. In

3 Only a couple of the estimated coefficients |dsdistically significance.

% This additional source of endogeneity could beresikd if we allowa to depend on a set of covariates
(such as income and energy price). Actually, weehtried to estimate some versions of this model
without success. This can be taken as evidendeedfatk of additional endogeneity problems, baisb
might be caused by the fact that the resultindiliked function is much more complex (i.e. non-tng
than wheru is homoscedastic.

13



addition, it should be pointed out that our resals even lower than those obtained in
several papers - such asnzen and Dey (2002Alfredsson (2004)or Mizobuchi
(2008) - that also get large direct and indirect reboun@a#, even reaching effects
larger than 100%, i.e. backfire outcomes. A sea@agon has to do with the curvature
of the estimated rebound-effects functionsFlgure 1it is shown that the proposed
rebound-effect functions are concave, at least wherwalue ofy’z in (7) and (8) tends

to be positive, as happens in our case due todbeiye value of the intercept and the
fact that all variables have been centred with @espo the sample mean. Thus, our
rebound effect estimates are likely to be upwabihged because the curvature imposed
on ourR functions “forces” the rebound effect to increasgidly when we move away
from the zero value. Research devoted to findingenfilexible yet still simple rebound-
effect functions that relax this curvature woulddasirable in the near future.

[Insert Figure 1 here]

On the other hand, it is worth mentioning that éséimated rebound effects in
Table 6is about 97% in both models when it is assumetl tthea estimated intercept
completely belongs t&® Hence, contrary to what happens in the efficieesymates
this procedure gives an upper bound for the rebceffect. These extremely large
values probably suggest tHais upward biased, so that the estimatgés also upward
biased (i.e. the truey is likely less than 1). Assuming, by contrast, tthee rebound-
effect function does not contain an intercept,dbttmates produce an average rebound
effect of about 50% for the PA rebound-effect fumreci{and negative for the SC model).
This outcome is, however, due to the fact thatvaliables have been centred with
respect to the sample mean, and thus we are ingptdsaR=0.5 for theaveragestate.
These results thus point out the importance ofsinlig the estimated intercepts when
computing rebound effects using an SFA approach.

Regarding the issue of allowing or not for supemssyvation outcomes,igure

2 shows the relationship between the ALS-adjustbdurd effects obtained using our
proposed models. This figure reveals that the retoeffects in which super-
conservation outcomes are not restricted (SC modsd) in practice monotonic
transformations of the rebound effects obtainedguanodels that only allow for partial
rebound effects (PA model). In other words, allayfor super-conservation outcomes
only has an effect on the magnitude of the rebaiffettts, but not on the relative values
across observations. Overall, these results irglitat the ranking of rebound effects
tend to be robust across different specificatidntt@R function.

[Insert Figure 2 here]

In Table 7we show the parameter estimates of both the PAS&hdthodels when
they are estimated without time dummies for robessnanalysis. These models are
presented to check the sensitivity of the apprgaoposed to measure rebound effects,
as these dummies are likely to be capturing - anmaithgr common temporal effects -
technological improvements in the energy efficiermfyhouseholds’ equipment and
appliances over time.

[Insert Table 7 here]

Again, both models perform quite well as most doafhts have the expected
sign and almost all of them are statistically digant. Secondly, the income per capita
and price variables of the rebound-effect functagain have the expected signs and
their coefficients are statistically significantoWever, while the remaining coefficients
are approximately in the same order of magnitulde,imcome and price elasticities in
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the frontier vary notably. This result is partialja striking and highlights the
importance of a proper specification of technicabgoess (using a time trend or
temporal dummies) in order to obtain unbiased edts of the price and income
elasticities. This may be a significant problemessally in those analyses aiming at
estimating rebound effects through the own priesstedity. Moreover, in the rebound-
effect function the coefficient of the price vailialis positive and the coefficient of the
income variable is negative, indicating that wdfl-states have lower rebound effects.
In Table 8we can see that both efficiency scores and rebefiiedts hardly change,
indicating that the specification of technical pegs in our model does not affect our
results. As we have seen previously, the reboufetitefiunction without adjustment and
the rebound effect without an intercept show theeloand upper bounds respectively
for both the efficiency score estimates and theuweld effect estimates. Encouragingly,
these results indicate that, overall, the estimat&diencies and rebound effects tend to
be robust to the different specifications of thehtgécal progress in the frontier.

[Insert Table 8 here]

Finally, our results might help policy makers tosige more effective energy
saving schemes. For instan¢egure 3shows the overall relationship between energy
efficiency and the rebound effect using our prefgénmodel, the PA specification. If we
sort the US states according to their averageieffty scores and then check their
average rebound effects, we can get an idea aheutdrrelation between these two
measures. The average energy efficiency of thesstatthe fourth quartile is 86.3%. As
usual in a frontier analysis framework, energy 8gsiarepotentially larger in those
states with lower efficiency scores. Unlike stanld8FA models, our models allow us
to know whether the potential reductions in enengyficiency are passed on entirely to
final energy savings. As the states of the foudhrtle have also the lowest rebound
effect (56.7%) we have more reasons to encourageggrefficiency improvements in
these states. On the other hand, it is worth meimtgpthat although efficiency and
rebound effects tend to increase as we move doemjulartiles, the gap between both
measures decreases and reaches a minimum diffeirerthe first quartile where the
most energy-efficient states (93.3%) are also thegh the largest rebound effect
(90.9%). This result indicates that as the efficienf US states increases, households
are less sensitive to changes in efficiency and/ tie not reduce their energy
consumption as much as would be expected if weswsg/ed by what happens to the
states with lower levels of efficiency.

[Insert Figure 3 here]

Focusing on the minimum rebound effectsTarble § we can see that although
the rebound effect is large on average, some UBsskave very small rebound effects
compared to others. It can be seeriimpure 3that there is a clear correlation between
energy efficiency and rebound effects, but thissdo®t mean that large energy
efficiencies necessarily imply large rebound eBektgure 4reveals the heterogeneity
that exists in our US sample. Those states with émergy efficiency (below the
median) and a low rebound effect (also below theliamg are highlighted in dark
orange. These states are identified here as pritargets for energy policies, since
improvements of energy efficiency in these statey gield large reductions in energy
consumption (and probably greenhouse gas emissio@s) the other hand, those states

131t should be stressed that if the average valusesl instead the median to classify the statessgven
(Connecticut, lllinois, Maryland, MassachusettsywN#ersey, New York and Utah) would be below the
average value of both efficiency and rebound eff@etl hence only these would be primary targets.
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marked in the lightest orange have large energgieficies as well as large rebound
effects and therefore they should be labelled as Idwer-priority targets. The
intermediate orange highlights those states the¢ leither low energy efficiency or a
low rebound effect and hence cannot be identifeg@réority objectives. In summary, a
sound policy would be not only focused on the miestficient states but also on those
with low rebound effects where the policy would &aa greater overall effect over
energy consumption.

[Insert Figure 4 here]

5. Conclusions

This paper highlights that the energy demand fesntiodel, originally proposed
by Filippini and Hunt (2011, 2012p get country-specific energy efficiency scoriss,
closely linked with the so-called rebound effechheenomenon widely examined in the
literature on energy economics. In particular, weveh shown that the standard
specification of the energy demand frontier modeditally imposes a rebound effect
equal to zero, something that clashes with the ecapievidence obtained in the
literature on the rebound effect.

Based on the stochastic frontier approach, a nepirgxal strategy is proposed
in this paper to measure the rebound effect adsocido energy efficiency
improvements. Our more comprehensive energy denfiemmdier model avoids the
‘zero’ rebound-effect assumption through the edtiomaof a rebound-effect function
that regulates the final effect of potential effiecy improvements on energy
consumption. Two specifications for the rebouncketfffunction that preclude backfire
outcomes are presented in the paper. While the Sfelmallows for super-
conservations outcomes, the PA model only allowsplartial rebound effects. We
however advocate using the latter model becawssitls obtaining too large (negative)
rebound effects for some observations that arecdiffto justify in economic terms.

We illustrate the approach proposed to measurifgpued effects with an
empirical application of US residential energy dachdata for 48 states over the period
1995-2011. The coefficients of the variables ineldidin the models are highly
significant, show the expected signs and have & gqaasonable magnitude regardless
of the specification of the rebound-effect functised. Regarding the efficiency scores
there is not much variation between estimated (Réd 8C) models and they do not
change much in response to the different optioresl us obtain the intercept of the
rebound-effect function.

In relation to the rebound effects, values that taxe large and too low are
obtained if we ignore or do not adjust the estimhatgercept of the rebound-effect
function. Although the estimated rebound effectsywaith the functional form, the
position of each observation does not change aS@eesbound effects is a monotonic
transformation of the rebound effects obtained \thih PA model. This is an important
result as the relative position of each state nms$eof both energy efficiency and
rebound effect rankings permits the identificatminstates where the enforcement of
policies with the aim of promoting energy efficignevould be more effective.
Compared to those analyses aiming at estimatingurebeffects through the own price
elasticity, our empirical approach suffers lesarfrbiases when technical progress is
ignored.
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To finish up, we would like to insist that this @aps the first attempt to use the
stochastic frontier framework to measure rebounteced associated to energy
efficiency improvements. In this sense, we haventified a few number of research
areas that can be explored by other researchettseimext future in order to better
estimate the rebound effects using a similar ewgdistrategy than the proposed here.
This likely would imply the use of more sophisteatechniques than those proposed in
this paper.

For instance, a key issue is the identificatiothef true intercept of the rebound-
effect function. We have proposed a simple emgirsteategy to split the estimated
intercept into its two components but other altéwesapproaches could be used to deal
with this problem. A promising strategy could beating the correction factor as an
additional one-sided random term and, hence, estigjaa model with two
multiplicative one-sided random terms. Another eshas to do with the concavity
problems of the proposed rebound-effect functiomkich tend to overestimate the
rebound effect. Although this is likely an issuéated to our data set, future research
will be likely focused on the use of alternativegraetric specifications of the rebound
function. In this sense, it should be also expldiesl potential use of semiparametric
regression methods to relax the current concavigstraints. We also encourage
specific research focused on the lack-of-backfasuanption used in our energy demand
frontier model.
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Table 1. Approaches for measuring the direct rebound effect

Approach1  &.(q)=£.(S)-1
Approach2 & (q)=-&,(S)-1

Approach3 & (a)=-¢; (q)-1

Notes: Letters in parentheses stand for elastizitperators and subscripts for elasticity denomisato
E: energy efficiencyg: Energy;S: Useful work;Ps. Energy cost of useful worle,: Energy price.

Table 2. Possible values for the rebound effect and theggrefficiency elasticity

R>1 Backfire & >0
R=1 Full rebound & =0
O0<R<1 Partial rebound -1<é&.<0
R=0 Zero rebound g =-1
R<O0 Super-conservation & <-1

Table 3. Summary statistics of variables

Variable Description Mean Std. Dev. Min. Max.
Q Energy consumption 229.60 209.42 19.02 932.92
Y Real disposable personal incom@2,620 105,635 6,072 654,780
P Real price of energy 16.86 5.11 8.22 35.18
POP Population 5977 6,407 485 37,692
HDD Heating degree days 5,134 2,007 555 10,745
CDD Cooling degree days 1,147 805 128 3,870
AHS Average household size 233 0.17 1.83 2.99
SDH Share of detached houses 62.27 9.74 13.20 74.00
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Table 4. Parameter estimates (models with time dummy vagbl

ALS PA SC
Parameters Est. Std. E. Est. Std. E. Est. Std. E.
Frontier
Intercept 5.012 *** 0.022 5.043 *** 0.018 5.042 *** 0.018
In (Y) 0.364 *** (0.037 0.238 ***  0.046 0.236 *** 0.046
In (P) -0.101 *** 0.025 -0.117 ***  0.030 -0.114 *** 0.030
In (POP) 0.670 *** 0.038 0.797 ***  0.047 0.799 *** 0.047
In (AHS) -1.117 *** 0.053 -1.480 ***  0.086 -1.469 *** (0.088
In (HDD) 0.373 ** 0.013 0.347 **  0.013 0.348 *** 0.013
In (CDD) 0.084 ***  (0.007 0.080 ***  0.008 0.080 *** 0.008
SDH 0.005 ***  0.001 0.005 ***  0.001 0.005 *** 0.001
Noise term
In (&) -2.633 *** 0.120 -2.554 ***  (0.036 -2.555 *** (0.037
Rebound-effect
Intercept 4,281 *** 0.714 4.124 *** 0.670
In (Y/POP) -7.014 *** 2242 -6.148 *** 2.034
In (P) 1.577 * 0.862 1446 * 0.769
In (AHS) -14.283 ***  3.640 -12.187 *** 3.165
Inefficiency term (homoscedastic)
In (ay) -2.530 *** (0.258
Log-likelihood 842.183 875.919 874.951

Notes: *** ** and * indicate that the coefficiemtre significant at 1%, 5% and 10%.
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Tableb5. Energy efficiency scores using the PA and SC models
(models with time dummy variables)

Mean Std. Dev. Min. Max.
ALS
0.939 0.025 0.831 0.977
PA
No interceptyp = 0) 0.964 0.040 0.703 0.989
ALS-adjusted)p = 1.833) 0.911 0.041 0.651 0.958
Not adjustedyp = 4.281) 0.455 0.078 0.202 0.847
SC
No intercept)p = 0) 0.987 0.003 0.974 0.997
ALS-adjusted)p = 1.593) 0.938 0.013 0.880 0.987
Not adjustedyp = 4.124) 0.455 0.079 0.200 0.848
Table 6. Rebound effects using the PA and SC models
(models with time dummy variables)
Mean Std. Dev. Min. Max.
PA
No intercept)p = 0) 0.505 0.269 0.033 0.982
ALS-adjusted)p = 1.833) 0.791 0.208 0.177 0.997
Not adjustedyp = 4.281) 0.966 0.052 0.713 1.000
SC
No interceptyp = 0) -1.178 3.131 -17.866 0.969
ALS-adjusted)p = 1.593) 0.557 0.637 -2.835 0.994
Not adjustedyp = 4.124) 0.965 0.051 0.695 1.000
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Table 7. Parameter estimates (models without time dummyalbes)

ALS PA SC
Parameters Est. Std. E. Est. Std. E. Est. Std. E.
Frontier
Intercept 4,937 **  0.009 4,992 ** 0.008 4.990 *** 0.008
In (Y) 0.259 **  0.033 0.114 *** 0.042 0.113 ** 0.041
In (P) -0.207 ***  0.017 -0.198 ** 0.021 -0.196 ** 0.021
In (POP) 0.776 ***  0.035 0.921 *** 0.043 0.923 *** 0.043
In (AHS) -1.113***  0.058 -1.430 ** 0.080 -1.422 *** (0.081
In (HDD) 0.353 **  0.013 0.326 ** 0.012 0.326 ** 0.012
In (CDD) 0.079 **  0.007 0.070 *** 0.007 0.069 *** 0.007
SDH 0.004 ***  0.001 0.004 *** 0.001 0.004 *** 0.001
Noise term
In () -2.738 ***  0.108 -2.518 *** (0.036 -2.520 *** (0.037
Rebound-effect
Intercept 4.014 ** 0.585 3.881 *** (0.539
In (Y/POP) -6.855 *** 1,930 -5.979 *** 1,720
In (P) 1.326 * 0.743 1.190 * 0.651
In (AHS) -12.592 *** 3,101 -10.719*** 2.696
Inefficiency term (homoscedastic)
In (av) -2.239 ***  0.117
Log-likelihood 804.455 839.947 839.194

Notes: *** ** and * indicate that the coefficiemtre significant at 1%, 5% and 10%.

Table 8. Energy efficiency scores and rebound effects uiiegreferred PA model

(model without time dummy variables)

Mean Std. Dev. Min. Max.

Energy Efficiency Scores

No intercept 0.957 0.044 0.671 0.985

ALS-adjusted 0.886 0.046 0.603 0.955

Not adjusted 0.456 0.083 0.150 0.861
Rebound effects

No intercept 0.506 0.258 0.042 0.970

ALS-adjusted 0.805 0.190 0.224 0.995

Not adjusted 0.961 0.054 0.708 0.999
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Figure 1. Curvature of the estimated rebound-effect funation
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Figure 2.
Rebound effects with and without super-conservatiaicomes (ALS-adjusted intercepts)
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Figure 3. Average energy efficiency scores and rebound tsfiesing the PA model
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Figure 4. Map of US states in which priority targets touee energy consumption are identified
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APPENDI X
Testing the assumption of equivalence in responses

Let us assume that the demand function is Cobb-Beugnd we use the SC
rebound-effect function. In this case, the pricasttity of energy demand can be
written as:

& =Bp+Vo[1-R|INE (A1)

where S, is thefrontier price elasticity andy,is the coefficient of InP in the SC
rebound-effect function. Ass. :—(1— R), equation (Al) can be rewritten now as
follows:

EP::BP_(yplnE)EE (A2)

In summary, equations (12) and (A2) jointly indedhat the equivalence of
responses assumption will be satisfied in our mddel cannot reject the following
null hypothesis:

Hy: B =JolnE=-1 (A3)

Testing this hypothesis is difficult as energy @éfncy varies across states and
over time. An alternative way to test the equivakenf responses assumption is to test a
sufficient (but weaker) condition for the fulfilmeaf the above hypothesis evaluated at
the estimated mean of the energy inefficiency term:

Ho:fBs - PoE(u)=0 (A4)

As we assume thai=-In E follows a half-normal distribution, the expected
mean in (A4) is simply a function af, and hence the sufficient condition in (A4) can

be finally expressed as follows:
HO:IéP_J}PVZ/ﬂoA-U:o (A5)
If instead we use the PA rebound-effect functibme, gufficient condition in (A4)
becomes:
- 'z

~ e ~
HO:IBP_VPW"Z/NJUZO (A6)
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